

施胆量品急助证制

一雲嘉南地區水稻合理化加肥

文圖 羅正宗 合南區農業改良場

水稻之生產與國民生活息息相 關,長期以來,政府為確保糧食供應 無缺,除致力於品種改良及生產技術 之改進外,在政策上採取各項有利於 水稻生產的措施,為台灣地區早期稻 作生產奠定良好基礎; 時至今日, 即 使國際情勢與國內生產環境均不利於 水稻之競爭力,但為確保國內糧食之 穩定供應與維持適當稻米自給率,政 府仍竭力的維持此一栽培面積最廣、 栽培戶數最多的產業。長久以來,國 内由於氮肥低價的糧食政策, 造成稻 農隨心所欲大量或過量地施用氮肥, 除增加生產成本外,亦造成對生態環 境之污染。近年來由於米質的提升是 稻作生產上重要的課題,因此,對提 升稻米品質的栽培理念漸受重視。氮

肥過量或不適時施用將導致米粒蛋白 質含量升高,造成食味品質降低。因 此,如何在兼顧水稻產量穩定,且維 持品質之氮肥的施用方式與施肥量, 是目前水稻栽培上一個重要的課題。

自國內調整肥料售價以來,稻農 朋友在施肥的過程中,已深感肥料成 本支出大幅提高,對獲利原本微薄 的水稻產業而言,肥料漲價政府雖大 部分予以補助,但仍究大幅增加生產 成本。值此關鍵時刻,稻農朋友似乎 應靜下來思考,昔日透過肥料之增施 而達到增加水稻產量的栽培習慣,在 肥料高價的時代是否應有所改變呢? 以增產為獲利手段的水稻高肥栽培模 式,是否應轉變為合理化施肥模式?

-. 合理化施肥模式之前提:地力 培養

良質米栽培是利用土壤培養水稻 根部,水稻根部培養地上部之莖、葉 及穗,因此施肥技術首重地力的培 養,最基本及簡便的培養地力可從稻 草回歸土壤及栽種綠肥開始。

(一)稻草回歸土壤

乾燥稻草是一種很好的有機質材 料,富含有機物、纖維素、半纖維

素、木質 素,並富含 鉀與矽。稻 草就地掩埋 處理可改善 土壤的理化 與生物性 質,增進地 力。水稻收 割後將稻草 回歸土壤, 為水田地力

培養之最簡 便及省錢之方法,連續幾個期作稻草 回歸土壤以後,稻田中有機質含量將 顯著地增加,有利於土壤理化性質之 改善。稻草就地掩埋,可有效節省處 理勞力與費用。在土壤質地較粗、排 水性良好之田區,掩埋稻草第一年即 有增產之效果,十壤質地較細、排水 較差者,連續掩埋第四年以後也可顯 現效果。不但有效提高土壤有機質含

其次,一般水稻的穀粒乾重與稻 草乾重之比值約在 1 左右,也就是說

量,並使土壤成為疏鬆的團粒構造。

當水稻稻穀產量為每分地 700 公斤(含 水量 13%) 時,其稻草乾重約為 600 公斤,而稻草氮素含量一般約在 0.7 -0.8% 之間。因此,當水稻收割後將稻 草回歸土壤,每分地水田約回收了 20 公斤硫氨以上的氮素肥料。既然稻草回 歸土壤有這麼多好處,而且政府近年 來大力推廣,為何仍有農友寧願燃燒稻 草亦不願翻耕於土壤中。主要有兩個原 因:一個是農友認為稻草燃燒後可將

水稻生長過於濃綠時,追肥應減量或不施開

存在於稻草 中的病原菌 及害蟲與蟲 卵燒死,另 一個是因為 稻草翻耕作 業後,常因 部分稻草未 能完全翻耕 入土壤中, 會浩成插秧 後漂浮之稻 草,因風力

作用而使秧苗倒伏。其實第一個原因是 農友們多慮了,因台灣第一期作與第二 期作水稻生長環境迥異,病蟲害發生種 類與頻度多不相同,稻草回歸土壤雖有 可能使部分蟲害得以延續,但只要施肥 合理,防制上並不困難;第二個原因則 可在水稻插秧後即讓稻田漸次放乾,約 於 4 - 5 天後十面水分消失,則原本漂 浮於水中的稻草即與土面黏著,此時予 以灌水,則稻草多已不會再漂浮,自然 不會造成秧苗倒伏。

合理施肥技術使水稻成熟期一致,稻穀產量及品質俱佳(左); 施肥過量或不適時施用易造成植株倒伏(右)

(二) 栽種綠肥

豆科綠肥作物其共生之根瘤菌可 固定空氣中之氮素,增加土壤中之氮 素,兼有防除雜草發生的效果。此 外,綠肥被翻耕到土壤中,可促進土 壤有益微生物的大量增殖,因而抑制 病原菌的繁殖。因此,種植綠肥作物 有培養地力、防除雜草及病害防治的 效果。為培養地力以及維持稻田土壤 之氮養分不被淋失,可在第二期作水 稻收割後種植油菜、田菁、大豆或青 皮豆等綠肥作物以增加地力。第一期作 水稻收割後,若有 50 天空閒期間,可 種植田菁或太陽麻等夏季綠肥作物,第 二期作水稻收割後至第一期作水稻插秧 前之冬季休閒期間種植綠肥作物,如大 豆、油菜等。一般綠肥作物翻耕後至少 需要經過 15 天以上之發酵時間才可以 種植水稻,否則水稻生長會受影響。

二. 合理化施肥模式之原則:適時 適量

台灣因位居亞熱帶,氣候適宜, 水稻 1 年可生產 2 期作,且同時生產 梗稻、秈稻、梗糯及秈糯等多種用途 之稻穀,為世界產米國家之特例。水 稻亦為台灣地區栽培面積最廣之糧食 作物。因此,如何提高水稻的產量與 品質一直是水稻研究者的目的。而水 稻產量之決定過程為一極複雜的動態 生長系統,受到品種、栽培技術、投 入資材、環境因子等諸因素影響。

近年來對於水稻的肥培管理研究 頗多,其中三要素之施用效應又以氮 素為最大,因此水稻之施肥技術即以 氮肥之施用技術為重。而氮肥更為稻 穀生產上最重要的肥料要素,對水稻 的收量指數達 80%。增施肥料雖是水 稻高產的重要條件,但隨著水稻產量 不斷提高,氮肥施用量也逐步增加, 但肥料施用不當時,往往出現肥效降低的趨勢,因此在高產栽培條件下, 氮肥的正確施用是一個相當值得注意 的問題。且長期以來,農民對抗病蟲 害且豐產的品種興趣濃厚,一味追求 稻穀產量豐收,導致現今水稻之施肥 量普遍偏高,尤其是對稻穀產量最有 直接貢獻的氮肥最為嚴重。據調查發 現農民氮肥的施用量,在 I、II 期 作幾乎都超過推薦用量的 1 倍以上。

良質水稻合理化施肥的最重要原則為「適時適量」的施用肥料,一般水稻施肥分為基肥、2次追肥與1次穗肥。基肥在整地前施用或第二次整地蓋平前,施用量約為30%氮肥、全部的磷肥、與40%鉀肥。水稻適當追肥不但可確保有效分蘗,且可幫

助植株強健。第一次追肥於水稻植株開始分蘗(俗稱碳角),第一期作於插秧後 18-20 天,第二期作為 8-10 天施用(需視氣候溫度而定或觀察植株下位葉葉鞘與主莖間有新芽長出),用量為 20% 氮肥。第二次追肥於分蘗盛期,第一期作與第二期作分別約在第一次追肥施用後 10-15 天及 10-12 天施用,施用量為 30% 之氮肥及 40%鉀肥,而施肥時以淺水灌溉,並封住出水口。良質水稻栽培肥料管理最後一次施肥為穗肥,施用時期為幼穗分化期(俗稱作棉)。判斷幼穗分化期可由田間拔取插秧時的母株(節間已伸長一

節半,每叢稻株葉片最高的那一株即是),除去葉片後在稻基部最上位節間處可發現 2 mm 白色絨毛狀的幼穗,即為幼穗分化期,施用量為 20% 氮肥及 20% 鉀肥。若以每公頃 160 公斤氮素 (硫銨 800 公斤,含氮素 21%),磷肥 54 公斤(過磷酸鈣 300 公斤,含磷 18%)及鉀肥 60 公斤(氯化鉀 100公斤,含鉀 60%),每公頃稻田所使用肥料的時期及用量舉例如下:基肥每公頃施用台肥 39 號複合肥料 400 公斤,第一次追肥每公頃施用硫銨 160公斤,第二次追肥每公頃施用台肥 1號複合肥料 200 公斤,穗肥每公頃施用台肥 1號複合肥料 200 公斤,穗肥每公頃施用硫銨 150 公斤。

良質水稻的合理化施肥,除因肥料用量準確精簡而降低生產成本外,也會因肥料的有效控制而減少無效分藥的發生,及降低上位葉與下位節間之長度,不但增加水稻株間的通風性,減少病蟲害發生,亦會減低生育後期倒伏的發生,並提高稻米品質。在此肥料價格高漲時代,良質水稻的合理化施肥應是水稻產業競爭力提升的重要措施。

三. 結語

現今多數農民為提高產量而增加 肥料用量,常有超過水稻需要量的情 形,肥料量過多不但是一種浪費,且 影響稻米的品質,同時易造成病蟲害 的孳生與土壤的酸化,甚至造成地下 水的污染。稻米的蛋白質含量(氮素 含量)為有關食味與營養價值的重要 特性,而與產量形成有關的分蘗及影 響光合作用速率的葉片氮素濃度等特 性,均是受氮肥施用之影響。因此, 在水稻整個生育過程中,氮素是影響 產量及品質的重要因素。

目前台灣農民仍以獲致水稻高產為追求的目標,而氮肥確為稻穀生產上最重要的肥料要素。但隨著施氮量的增加,產量增幅卻有逐漸減少的趨勢。增施氮肥雖然對糧食生產起了十分重要的作用,但生產中化肥、農藥投入的增加,卻也使得糧食的增產效用趨於降低以及環境污染加重,氮素肥料被水稻吸收利用比率,因氮素肥料之施用量及施用時期而有不同。因此,依前述如何在適當時間投施適當的肥料量,才能在國際能源吃緊的條件下,以合理的施肥量獲致安全合理的產量。

表 1. 雲嘉南地區水稻合理化施肥之肥料施用推薦量

施肥次數	肥料量 (公頃) 及成分 (N:P:K)	要素成分量(公斤/公頃)			施用時機
		N	P ₂ O ₅	K₂O	加州村城
基肥	台肥 39 號複合肥料 400 公斤 (N:P ₂ O ₅ :K ₂ O = 12:18:12)	48	72	48	整地時
第一次追肥	硫酸銨 160 公斤 (N:21%)	33.6	0	0	分蘗始期
第二次追肥*	台肥 1 號複合肥料 200 公斤 (N:P ₂ O ₅ :K ₂ O = 20:5:10)	40	10	20	分蘗盛期
穗肥	硫酸銨 150 公斤 (N:21%)	31.5	0	0	幼穗分化期
合計		153.1	82	68	

^{*} 依各田區葉色之濃淡決定施用量。