Irrigation & Engineering Series No. 1

J R R

CHINESE-AMERICAN

JOINT COMMISSION ON RURAL RECONSTRUCTION

Irrigation & Engineering Series No. 1

KULE CURVE FOR THE OPERATION OF AN IRRIGATION RESERVOIR

Lin-shih Chen

Senior engineer Irrigation and Engineering Division

TAIPEI, TAIWAN, REPUBLIC OF CHINA

OCTOBER 1972

CONTENTS

	Page
Abstract	
Part A.	Principle of Operation and the Best Rule Curve for
	the Minteh Reservoir 3
1.	Rule Curve for an irrigation reservoir 3
2.	The Minteh reservoir 4
3.	Irrigated areas, soil and crop 6
4.	Hydrological data
5.	Seepage loss in reservoir
6.	Effective rainfall and irrigation requirement for rice
7.	Effective rainfall and irrigation requirement for
	upland crops
8.	Daily reservoir release
9.	Evapo-transpiration of crops11
10.	Hindcast study of reservoir operation12
11.	Derivation of rule curves14
12.	Reservoir operation under the guidance of rule curve
13.	Results of study
14.	Selection of the best rule curve
15.	Updating of the rule curve
16.	Application of this study to other reservoirs
Part B.	The Computer Program
1.	The computer language
2.	The program
3.	Nomenclature of symbols used in the program
4.	Flow chart
5.	Arrangement of data cards
6.	The listing of the Program

RULE CURVE FOR THE OPERATION OF AN IRRIGATION RESERVOIR

ABSTRACT

The purpose of operating an irrigation reservoir is to regulate water supply to meet the irrigation requirements of growing crop. The operation may be guided by a Rule Curve to achieve the optimum irrigation benefit on a long term basis. The method of deriving a rule curve is discussed in this paper, taking the Minteh Reservoir as a sample case.

The Minteh Reservoir, originally named the Houlung Reservoir, is located on the Lao-tien-liao Creek, Miaoli, Taiwan, Republic of China. It serves the irrigation needs of 1,509.41 hectares of farm land planted to rice and upland crops.

This reservoir was built mainly to regulate the seasonal flow of the Laotien-liao Creek for irrigation in ordinary years. For extraordinary years when a severe drought may last several months in a year, the flow of the creek would be so low that irrigation must depend entirely on the stored water in the reservoir. Water deficiency in severe drought years is bound to happen. A method to operate the Reservoir that could minimize the crop loss in the irrigated area due to drought, or maximize the irrigation benefit on a long term basis is therefore necessary. Such a method of operation has been studied, and a rule curve to guide such an operation established.

A rule curve is a graph, in which the abscissa represents a date in a year and the ordinate the value of reservoir storage (represented by the Symbol RC). In actual operation on a particular date, one first finds out the current storage of the reservoir (represented by the Symbol S), and then compares S with RC. If S is smaller than RC, this means there is the possibility of water deficiency in the near future and the reservoir release for irrigation must be made 30%less than the normal quantity in order to keep more water stored. If S is larger or equal to RC, then there is no need to reduce the normal release. It is in this way that a rule curve guides the operation of an irrigation reservoir.

- 1 --

In this study, the first step is to hindcast the reservoir opeartion releasing water always in normal quantities. This gives the recurrences of reservoir storage in the period of study. For the Minteh Reservoir, the study period is 19 years from 1951 to 1969 inclusive. The daily effective rainfall for irrigated crops is studied in detail in order to make the estimation of daily irrigation requirement as well as the daily reservoir release more exact.

Based on the recurrences of reservoir storage, five rule curves are obtained. Rule Curve 1 is made of the largest values of recurrences. Rule Curve 2 is made of the smallest values of recurrences. Rule Curves 3, 4 and 5 are made of values which have the recurrence frequences of 75%, 50% and 25%, respectively. An arbitrarily determined curve is adopted as Rule Curve 6.

Then, each of the six curves is taken successively to guide the operation of the reservoir. This means that the reservoir operation in the study period is hindcast six times, taking into consideration one rule curve at one time.

The results of these six hindcast calculations are then compared and discussed, and Rule Curve 4, which is made of values having a recurrence frequency of 50%, is selected as the best rule curve.

The entire study is done by the use of a computer program written in PL/I language. It takes 45 minutes to run the program on an IBM System 360 Model 40 computer.

Contents of this study are described in two parts. Part A explains the principle of reservoir operation and the best rule curve for the Minteh Reservoir, and Part B explains the computer program.

This study can be updated whenever necessary by re-running the program with new data available.

The computer program can also be applied to the study of other irrigation reservoirs, requiring only some minor changes in the statements of the program.

- 2 -

Part A. Principle of Operation and the Best Rule Curve for the Minteh Reservoir

1. Rule Curve for an irrigation reservoir

An irrigation reservoir may be operated without the guidance of a rule curve. In such a case, the daily release of water from the reservoir can be done according to the normal irrigation requirement of the day. Reservoir inflow in the next few weeks and the current storage of the reservoir are not taken into consideration. Should the inflow drop appreciably in the next few weeks due to lack of rains, and should the reservoir be currently at a low storage level, then the reservoir would deplete rapidly. In this way, the release would be insufficient to meet the irrigation need, and the crop yield in the irrigated area would be affected.

If there were reliable weather forecasts which tell the timing and the quantities of rainfall in the near future, the above mentioned problem could easily be solved.

Since there is no weather forecast of this kind at present, the only practical way of solving this problem is to regulate the daily reservoir release by referring the current reservoir storage to a pre-set indicator. This indicator must fully reflect the real long-term experience or the result of a hindcast study of the operation of the reservoir in past years.

This indicator is the Rule Curve. A typical rule curve assumes the shape of the curve shown in Figure 1.

The abscissa of this graph represents the irrigation season, indicating the dates in a whole year. The ordinate tells the values of storage (or elevation of water surface) of the reservoir. The rule curve thus gives the value of storage at any given time in the irrigation season.

For a particular date in consideration, one compares the current storage at that date (represented by the symbol S) and the value of storage shown by the rule curve at that date (represented by the symbol RC). In case the position of S is above or equal to that of RC in the graph, this means that water deficiency will not occur in the near future and there is no need to regulate the reservoir release at that date, and the release remains to be the normal quantity of irrigation requirement of that date. If the position of S is lower than RC, then regulation of reservoir release is necessary.

By regulation it means simply the reduction of the normal amount of reservoir release. A conventional way is to reduce it by 30%, as the yield of crops would not be appreciably affected by this lowered water supply amounting to 70% of the normal irrigation requirement in a short period.

This regulating method can help narrow the difference in magnitude between RC and S in later dates. If the magnitude of S is brought up to that of RC or larger, the regulating should be stopped.

By this way, one could avoid or minimize the danger of serious irrigation deficiency in drought periods. Therefore, the loss of crop yield in the irrigated area could be minimized.

2. The Minteh reservoir

The Minteh reservoir is located on the Lao-tien-liao creek, Miaoli, Taiwan, Republic of China. By constructing a rolled fill earth dam of 35.3 meters in height, this reservoir was created for the main purpose of irrigation.

The effective storage capacity of this reservoir is 1,650 hectare-meters. (1 hectare-meter equals to 10,000 cubic meters.)

The total irrigated area is 1,509.41 hectares.

The outlet structure on the north side of the reservoir connects with a tunnel and a main canal of 15.022 kilometers. The maximum capacity of the canal is 4.224 c.m.s., The main canal branches into laterals and sub-laterals. All sub-laterals and ditches are arranged according to the needs of rotational irrigation and topography.

There is concete lining for all main, lateral and sub-lateral canals. Seepage loss in the canal system is nearly non-existent. Regulating gates and structures are provided at all controlling points in the system. Effective management and control of irrigation water is thus possible.

The Minteh reservoir is operated for the seasonal regulation of the flow of Lao-tien-liao creek in ordinary years. For extraordinary years when a severe drought may last several months, the flow of the creek would be so low that irrigation depends entirely on the stored water in the reservoir. It was recognized in the planning stage of this project that the reservoir could not be built big enough to take care of all droughts for economic reasons. A method to operate the reservoir that could minize the crop loss in the irrigated area because of droughts, or maximize the irrigation benefit on a long-term basis, is therefore necessary.

3. Irrigated area, soil and crop

The irrigated area of the Minteh reservoir is a piece of land sloping from foothills to the sea coast. Land configuration is rather complex. It is divided into 4 zones according to topography and soil.

Soil texture of this area varies from medium to coarse. Distributed most extensively is the sandy soils of aeolian origin, which account for 64.95% of the area. Alluvial soils occupy 6.62% and reddish and brown soils 28.43%.

Multiple cropping is practised in this area. The first crop is cultivated from March to June, the second crop July to November, and the winter crop November to February.

The areas, soils and crops of the respective zones are shown in the following table:

	Zone 1	Zone 2	Zone 3	Zone 4	Total
Area (ha.)	381.12	260.84	532.94	334.51	1,509.41
Soil	Silty-loamy	Silty-loamy	Loamy-sandy	Sandy	
First crop	Rice	Rice	Upland crop	Upland crop	
Second crop	Rice	Rice	Upland crop	Upland crop	
Winter crop	Upland crop or vegetable	Upland crop or vegetable	Upland crop or vegetable	Upland crop or vegetable	

Table 1

- 6 -

4. Hydrological data

This study is a hindcast study utilizing hydrological data covering 19 years from 1951 to 1969 inclusive. (the Minteh reservoir started its operation in 1970.)

Three kinds of hydrological data are used in this study. The first kind is the daily stream flow data of the Lao-tien-liao creek. This is used for the reservoir inflow estimation.

The second kind is the daily rainfall data at Houlung, a town situated near to the irrigated area. Such rainfall data are used for the effective rainfall estimation in the Irrigation Requirement calculations.

The third kind is the pan evaporation data at Hsinchu. Although Hsinchu is located some distance away, it belongs to the same climatic region of the Minteh reservoir and its irrigated area as far as evaporation is concerned.

The evaporation data are used to estimate the Evapo-transpiration of crops, and to calculate the evaporation loss from the water surface of the reservoir. As Hsinchu is located in a plain area and the Minteh reservoir in a hilly area, an empirical factor of 0.6 is applied to the evaporation data in the evaporation loss calculations.

5. Seepage loss in reservoir

The reservoir site is composed of tight rock of good quality. The geological structure there is simple. It was judged that the seepage loss in reservoir would be negligible.

6. Effective rainfall and irrigation requirement for rice

It has been a good practice in Taiwan to estimate the effective rainfall for crops in the irrigated areas. This can make the estimation of irrigation requirement and the reservoir release more exact.

The method of calculating the effective rainfall and irrigation requirement for rice is explained in the following:

- 7 -

Fig. 3. A schematic graph illustrating effective rainfall for rice

Referring to Fig. 3 of a schematic paddy field, let

MAX be the maximum depth of water in the paddy field.

SW be the depth of water standing in the paddy field on the day of consideration.

EV be the daily evapo-transpiration of rice.

P be the daily percolation loss from the bottom of paddy field.

E = EV + P

R be the daily rainfall.

IR be the daily irrigation (represented by depth of water).

OV be the overland overflow from the paddy field.

ER be the effective rainfall of the day.

At the beginning of the day of consideration (in fact the same as the end of the day before this day), the SW is termed $(SW)_o$. At the end of the day, the SW is termed $(SW)_n$.

Calculate first $SW = (SW)_o + R - E$

Case 1: If SW is greater than Max, then

OV=SW-Max

ER = R - OV

IR=0 (Irrigation is not necessary for this case, since the rainfall is more than enough.)

$$(SW)_n = Max$$
 (After overflowing, water standing in paddy field
at the end of the day is the maximum depth.)

Case 2: If SW is equal to or less than Max and is greater than 0, then ER=R

IR=0 (Irrigation is not necessary, since water stored in paddy field plus rainfall is enough to meet the requirement.) (SW)_n=SW

- 8 -

- Case 3: If SW is equal to or less than 0 (This is a hypothetical SW. Actually it means that water stored in paddy field plus rainfall is not enough to meet the requirement.) then ER=R
 - IR=(-SW) (The amount of irrigation is just equal to the amount of deficiency.)

 $(SW)_n=0$ (No water is standing at the end of the day.)

This method provides for day-to-day calculations to give both the effective rainfall (ER) and the irrigation required (IR).

In this method, Max is set at 60 millimeters by experience.

From the above, it is clear that irrigation is provided basically by the Continuous Irrigation method. It is assumed in this study that the results of the calculations can be regarded close to the effective rainfall and irrigation required under the Rotational Irrigation condition.

7. Effective Rainfall and irrigation requirement for Upland Crops

Let

ER = R

AM	be the amount of Readily Available Moisture in soil.
(AM)	be the AM at the beginning of the day of consideration.
$(AM)_n$	be the AM at the end of the day of consideration.
Max	be the maximum amount of readily available moisture in soil,
	which is set at 50% of the soil's field capacity.
R	be the amount of rainfall on the day.
EV	be the evapo-transpiration of upland crop on the day.
LOS	be the irrigation loss through surface runoff and/or deep perco-
	lation.
IR	be the amount of irrigation needed to be applied on the day.
First ca	lculate $AM = (AM)_o + R - EV$
Case 1:	If AM is greater than Max, then
	LOS=AM-Max
	ER=R-LOS
	IR=0
	$(AM)_n = Max$
Case 2:	If AM is equal to or less than Max and is greater than 0, then

IR=0 $(AM)_n=AM$

Case 3: If AM is equal to or less than 0, then
 ER=R
 IR=(-AM)+Max
 (AM)_n=Max (After irrigation, the readily ava!lable moisture is
 brought back to its maximum amount.)

It is deliberately arranged that for both rice and upland crops, the cases and expressions in the calculation of effective rainfall are in identical form. This will give much convenience in the computer programming.

As the lands planted to upland crops in the irrigated area are of sandy soils, the value of Max is determined to be 45 millimeters by soil test.

8. Daily reservoir release

The daily release of the Minteh reservoir is composed of irrigation requirement, water for industrial and domestic use, and supplemental supply to outside areas. The latter two factors remain fixed in this study; it is the irrigation requirement that changes from day to day.

On a typical day of consideration, the respective irrigation requirements for the four zones in the irrigated area (derived from calculations explained above in paragraphs 6 and 7) are multiplied by the repective areas of the zones to give respective amounts of net irrigation for the zones. A field irrigation efficiency factor of 0.7 is then considered for upland crop irrigation, and that for rice irrigation is 1.

Although the canal system is all concrete lined, a conveyance loss factor of 0.25 is still applied to give the gross amount of reservoir release.

This day-to-day calculation of irrigation requirement is much complicated by the presence of seedlings, land preparation and staggering of transplanting times for the paddy fields. Separate calculations are made for water requirements of these items. This is done by following the irrigation schedule previously planned. This schedule is thus attached to the end of this paragraph.

The industrial and domestic supply is 26,700 cubic meters per day.

The supply to outside areas is 34,560 cubic meters per day in the period from July 21 to October 20.

Table 2. Irrigation Schedule of Minteh Reservoir 明德水庫灌區供水計劃

Remarks: 1. Seedling period: 1st crop-40 days, 2nd crop-20 days.

- 2. Water for seedbeds is combined into the requirement for land preparation when the latter begins.
- 3. Water for land preparation is supplied one day before transplanting. Times of transplanting are staggered in 25 days for the 1st crop and 20 days for the 2nd crop.
- 4. Irrigation period for the first crop is 110 days, and for the second crop 90 days.

9. Evapo-transpiration of Crops

a. For Rice

The evapo-transpiration of rice and the seepage loss of paddy field are combined in a single term—the Consumptive Use of rice. For Zones 1, 2 and 3 where rice is planted, the corresponding amounts of consumptive use in millimeters per day have been determined as 7.92, 11.85, 17.53 respectively. (Refer to p. 41, Addendum to Houlung Reservoir Planning Report, published by the Taiwan Provincial Water Conservancy Bureau, in Chinese, as its Monograph No. 22, August 1963.)

b. For Upland Crops

The Hargreaves' ratio of evapo-transpiration to pan evaporation is used for estimating the daily evapo-transpiration value of crops. To simplify the problem, standard crops are chosen to represent planted crops on the land for this study. The standard crops for the first crop, the second crop and winter crop are respectively Corn, Corn, and Small Grains.

The following table shows the Hargreaves' ratios of the standard crops. These ratios are used in the calculation of this study.

Cropp				R	elative	Grow	th in	%			
	0	10	20	30	40	50	60	70	80	90	100
First crop (corn)	.20	.30	.50	.65	.80	.90	.90	.85	.75	.60	.50
Second crop (corn)	.20	.30	.50	.65	.80	.90	.90	.85	.75	.60	.50
Winter crop (grains)	.15	.25	.35	.40	.50	.60	.70	.80	.90	.90	.30

Table 3. Hargreaves' Ratio for Standard Crops

10. Hindcast study of reservoir operation

The reservoir operation is hindcast studied.

The starting date selected for this hindcast operation is July 1, 1951 under the reservoir full condition. This selection is considered proper because the reservoir tends to be full in July nearly every year.

The operation is first performed without the guidance of a Rule Curve.

The first set of calculations is carried out on a day-to-day basis. Steps involved in the calculations are as follows:

- (a) Net Inflow is obtained by substracting from the Inflow the Evaporation Loss. Seepage Loss is considered negligible.
- (b) Substracting Reservoir Release of the day from the Net Inflow gives the Storage Difference ΔS .
- (c) This ΔS , when added to the Storage at the beginning of the day, gives the storage at the end of the day.
- (d) If the resulting storage from step (c) is larger than the reservoirfull capacity, overflow occurs. The storage is thus made equal to the reservoir-full capacity.
- (e) If the resulting storage from step (c) is smaller than the reservoirempty capacity, the storage is made equal to the reservoir-empty capacity.
- (f) The period from the first through the tenth day inclusive of a month is termed the First Part, the 11th to 20th the Second Part, and the 21th to the last day of a month the Third Part. The storage values resulting from step (c) calculated on the 10th, 20th and the last day are printed out.

Summary values of each Part on rainfall, effective rainfall, irrigation requirement, domestic and industry requirement, reservoir inflow, evaporation loss, net inflow, spillage, and deficiency are all calculated and printed out. Table 4. Sample Print-out by Computer of Calculations on Effective Rainfall, Irrigation Requirement and

YEAR 1951

Reservoir
Minteh
for
Study
Operation
Reservoir
-

Dadciancu	nettoria	Cub. M.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Caillage	opmage	Cub. M.	1,771,457	727,163	0	0	3,249,456	0	0	0	0	0	0	0	0	0	0	0	0	0	5,748,076
C + O + O C	ororage	Cub. M.	17,000,000	17,000,000	15,448,566	15,700,308	16,631,982	14,728,664	12,194,732	9,961,372	8,917,566	7,298,461	9,535,236	9,387,142	8,754,899	8,981,899	8,299,966	8,613,470	8,069,953	7,957,074	
Net .	Inflow	Cub. M.	2,719,724	1,084,107	791,150	2,445,776	5,807,592	559,400	266,152	113,311	199,124	177,333	3,589,998	661,539	318,653	494,000	334,525	580,504	283,252	949,941	21,376,081
Evapo-	Loss	Cub. M.	51,124	63,285	68,530	49,456	43,416	69, 592	55,256	48,257	24,652	31,755	27,570	27,069	30,403	19,216	23,171	25,160	26,924	19,467	704,303
Reservoir	Inflow	Cub. M.	2,770,848	1,147,392	859,680	2,495,232	5,851,008	628,992	321,408	161,568	223,776	209,088	3,617,568	688,608	349,056	513,216	357,696	605,664	310,176	969,408	22,080,384
Required	Keservoir Release	Cub. M.	948,267	356,944	2,342,584	2,194,034	1,626,462	2,462,718	2,800,084	2,346,671	1,242,930	1,796,438	1,353,223	809,633	950,896	267,000	1,016,458	267,000	826,769	1,062,820	24,670,931
Domestic Industry	Require- me n t	Cub. M.	267,000	267,000	293,700	267,000	267,000	293,700	267,000	267,000	267,000	267,000	267,000	293,700	267,000	267,000	267,000	267,000	267,000	293,700	4,912,800
Irrigatio n	lequirement	Cub. M.	681,267 DA 916 4917	DA 210,421) 89,944 DA 0)	DA 2,048,884	DA 214, (49) 1,927,034 DA 0)	м4 0) 1,359,462 Ри 915 759)	2,169,018 2,169,018	DA 2,533,084	D4 220,400 2,079,671 D4 920,126	D4 230,130) 975,930 D4 01	1,529,438	1,086,223	515,933	DA 683,896	0 0 0	749,458 749,458	1001/017 #VI 0 0	D4 559,769	R4 222,442)	19,758,131 R4 1,996,293)
	rea H	. M.	3.5		0,	2.9	3.5	4.3		0.	14.7	3.6	6.0	6.0	6'8'	4.8	0.	7.2			1.0 (1
nfall	ca A	M. M		×,	0.	8.	×.	cr,	0.	0.	ۍ ى	.6	.1 2	0,	8.	×,	0.	5	Ģ	0.	.8
ive Rai	a Ar	1. M.	41			2	16	4			22		б 	9		4					142
Effect	Are: (2)	M. N	41.1	χ	0.	12.9	23.5	4.3	o,	0.	34.7	3.6	82.2	6.0	1.6			13.5	<u>.</u>	14.0	239.8
	Area (1)	M.M.	41.1	×,	0.	12.9	23.5	4.3	0.	0.	34.7	3.6	81.5	6.0	1.6	2.	0.	13.5	0.	14.9	239.1
Rainfall	M. M.		41.1	8.	0.	12.9	23.5	4.3	0.	0.	34.7	3.6	82.2	6.0	9.8	4.8	0.	13.5	0.	40.8	278.0
	Mon Pt		Jul. 1	Jul. 2	Jul. 3	Aug. 1	Aug. 2	Aug. 3	Sep. 1	Sep. 2	Sep. 3	Oct. 1	0ct. 2	Oct. 3	Nov. 1	Nov. 2	Nov. 3	Dec. 1	Dec. 2	Dec. 3	

- (g) Summary values of each year on rainfall, effective rain fall, irrigation requirement, domestic and industry requirement, reservoir inflow, evaporation loss, net inflow, spillage and deficiency are calculated and printed out.
- (h) The above steps (a) to (g) are repeated for the 19 years.Table 4 is a sample sheet of the Print-out

11. Derivation of rule curves

One of the results of calculations in step (f) mentioned in Paragraph 10 above is a print-out of the value of storage on the 10th, 20th and the last day of a month, for every month of the 19 year hindcast study period.

To explain the derivation of Rule Curves, these values of storage are regrouped in the following manner:

- (a) Set out a table of 36 columns, corresponding to the 36 parts of a year by dividing each month into 3 parts.
- (b) Storage values of the 10th, 20th and the last day of a month are used to represent the storage of the 1st, 2nd and 3rd part of the month.
- (c) Fill in by the order of year the storage values of the same part under the corresponding column.

Such a table is given as Table 5.

In Table 5, there are 36 columns each containing 18 or 19 storage values. By picking up or computing the values from these columns, one gets 36 storage values which constitute the 36 points of a rule curve.

Five rule curves are obtained this way:

- (a) Rule Curve 1—by picking up the largest value in each column. (this is the upper envelop)
- (b) Rule Curve 2—by picking up the smallest value in each column. (this is the lower envelop) In case the smallest is the value of reservoir-empty storage, then the next smallest is selected instead.
- (c) Rule Curve 3—A computed value which has the recurrence frequency of 75% of all values in each column.
- (d) Rule Curve 4—A computed value which has the recurrence frequency of 50% of all values in each column.
- (e) Rule Curve 5—A computed value which has the recurrence frequency of 25% of all values in each column.

- 14 -

	-	Jan.				Feb.			Mar.			Apr.			May.			Ju n .	
Yea	ir	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
195	51																1		
195	52	8.3	8.8	8.8	9.3	10.7	11.2	10.7	9.5	7.4	13.0	12.0	10.3	7.7	5.6	4.9	6.0	4.9	7.8
195	53	8.4	8.2	9.0	10.5	17.0	17.0	16.5	16.9	16.2	16.7	17.0	17.0	17.0	17.0	17.0	17.0	16.9	15.4
195	54	6.0	5.3	6.2	6.2	6.3	7.7	7.5	7.5	6.4	4.7	8.1	10.0	8.5	6.6	4.8	4.0	2.1	1.2
195	55	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.7	1.2	1.2	1.2	1.2	4.2	6.4	5.5	3.2
195	6	16.7	17.0	17.0	17.0	17.0	17.0	17.0	17.2	16.1	14.9	14.0	16.8	17.0	17.0	16.4	16.7	17.0	16.2
195	57	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	16.6	14.6	12.3	12.4	17.0	17.0	17.0	17.0
195	58	11.8	12.3	13.2	15.6	17.0	17.0	16.6	15.2	14.5	15.0	13.9	12.0	9.8	7.7	7.3	5.9	7.5	9.2
195	59	7.1	7.0	6.9	7.1	8.4	14.7	16.0	15.7	13.1	11.5	10.8	17.0	16.1	14.2	15.5	17.0	16.0	14.3
196	50	11.5	10.8	10.8	10.7	10.6	9.6	8.8	7.1	5.4	5.6	3.8	5.6	5.5	5.3	17.0	17.0	17.0	16.3
196	51	11.5	11.4	10.0	10.1	10.3	12.3	12.3	14.1	16.8	15.1	14.8	14.3	13.7	12.3	14.0	13.3	10.9	10.5
196	52	8.8	8.7	8.6	8,5	8.4	8.4	7.6	6.1	12.9	13.6	13.9	13.6	13.1	10.8	9.4	7.9	12.0	10.1
196	53	7.6	7.5	6.0	5.8	5.8	5.7	4.9	3.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	2.1	1.6
196	64	8.3	8.7	11.8	12.7	12.8	15.2	15.1	13.5	10.6	8.4	5.9	3.4	1.9	1.2	1.2	3.3	5.7	4.1
196	35	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.5	2.9	3.9	8.4	7.6	7.0	10.4	10.1
196	66	2.9	2.7	2.6	2.5	2.3	2.3	1.5	1.2	4.3	4.6	2.8	1.3	2.1	1.2	1.2	17.0	16.9	15.8
196	57	7.1	7.1	7.0	7.6	7.6	7.8	7.6	5.9	3.1	1.6	1.2	1.2	1.2	1.2	17.0	16.9	16.6	14.5
196	58	1.9	1.8	1.7	7.5	10.1	12.2	12.4	10.8	16.2	16.4	15.4	16.1	13.8	12.1	17.0	17.0	17.0	16.9
196	59	4.0	4.1	4.1	4.6	4.6	5.0	6.9	9.0	7.1	5.8	4.4	2.0	1.2	1.2	5.8	12.1	17.0	16.9
		4.0 4.1 4.1 4.6 4											ú.						
		Jul.		1	Aug			Sep.			Oct.			Nov.			Dec.		
Yea	ar		Jul.	3	1	Aug.	3		Sep.	3	1	Oct.	3	1	Nov.	3	1	Dec.	3
Yea	ar	1	Jul. 2	3	1	Aug.	3	1	Sep.	3	1	Oct.	3	1	Nov.	3	1	Dec.	3
Yea 	ar 51	1	Jul. 2 17.0	3	1	Aug. 2 16.6	3	1	Sep. 2 9.9	3	1	Oct. 2 9.5	3	1	Nov. 2 8.9	3	1	Dec. 2 8.0	3
Yea 	ar 51 52	1 17.0 6.9	Jul. 2 17.0 17.0	3 15.4 16.9	1 15.7 17.0	Aug. 2 16.6 17.0	3 14.7 16.9	1 12.1 17.0	Sep. 2 9.9 16.4	3 8.9 14.5	1 7.2 12.2	Oct. 2 9.5 10.6	3 9.3 9.0	1 8.7 8.7	Nov. 2 8.9 8.6	3 8.2 7.7	1 8.6 7.6	Dec. 2 8.0 7.7	3 7.9 8.3
Yea 	ar 51 52 53	1 17.0 6.9 17.0	Jul. 2 17.0 16.0	3 15.4 16.9 15.7	1 15.7 17.0 13.1	Aug. 2 16.6 17.0 17.0	3 14.7 16.9 15.6	1 12.1 17.0 14.8	Sep. 2 9.9 16.4 13.0	3 8.9 14.5 11.0	1 7.2 12.2 11.8	Oct. 2 9.5 10.6 9.8	3 9.3 9.0 9.1	1 8.7 8.7 9.0	Nov. 2 8.9 8.6 8.4	3 8.2 7.7 8.4	1 8.6 7.6 6.9	Dec. 2 8.0 7.7 6.8	3 7.9 8.3 6.0
Yea 195 195 195 195	ar 51 52 53 54	1 17.0 6.9 17.0 1.2	Jul. 2 17.0 17.0 16.0 1.2	3 15.4 16.9 15.7 1.2	1 15.7 17.0 13.1 1.2	Aug. 2 16.6 17.0 17.0 1.2	3 14.7 16.9 15.6 1.2	1 12.1 17.0 14.8 1.2	Sep. 2 9.9 16.4 13.0 1.2	3 8.9 14.5 11.0 1.2	1 7.2 12.2 11.8 1.2	Oct. 2 9.5 10.6 9.8 1.2	3 9.3 9.0 9.1 1.2	1 8.7 8.7 9.0 1.2	Nov. 2 8.9 8.6 8.4 1.2	3 8.2 7.7 8.4 1.2	1 8.6 7.6 6.9 1.2	Dec. 2 8.0 7.7 6.8 1.2	3 7.9 8.3 6.0 1.2
Yea 195 195 195 195 195	ar 51 52 53 54 55	1 17.0 6.9 17.0 1.2 10.1	Jul. 2 17.0 17.0 16.0 1.2 12.6	3 15.4 16.9 15.7 1.2 16.9	1 15.7 17.0 13.1 1.2 15.1	Aug. 2 16.6 17.0 17.0 1.2 16.2	3 14.7 16.9 15.6 1.2 17.0	1 12.1 17.0 14.8 1.2 17.0	Sep. 2 9.9 16.4 13.0 1.2 17.0	3 8.9 14.5 11.0 1.2 16.3	1 7.2 12.2 11.8 1.2 15.1	Oct. 2 9.5 10.6 9.8 1.2 13.4	3 9.3 9.0 9.1 1.2 12.6	1 8.7 9.0 1.2 12.8	Nov. 2 8.9 8.6 8.4 1.2 13.5	3 8.2 7.7 8.4 1.2 15.2	1 8.6 7.6 6.9 1.2 15.1	Dec. 2 8.0 7.7 6.8 1.2 15.2	3 7.9 8.3 6.0 1.2 15.8
Yea 195 195 195 195 195	ar 51 52 53 54 55 56	1 17.0 6.9 17.0 1.2 10.1 16.2	Jul. 2 17.0 16.0 1.2 12.6 17.0	3 15.4 16.9 15.7 1.2 16.9 17.0	1 15.7 17.0 13.1 1.2 15.1 17.0	Aug. 2 16.6 17.0 17.0 1.2 16.2 17.0	3 14.7 16.9 15.6 1.2 17.0 17.0	1 12.1 17.0 14.8 1.2 17.0 17.0	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0	1 7.2 12.2 11.8 1.2 15.1 16.2	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7	3 9.3 9.0 9.1 1.2 12.6 17.0	1 8.7 9.0 1.2 12.8 17.0	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0	3 8.2 7.7 8.4 1.2 15.2 16.0	1 8.6 7.6 6.9 1.2 15.1 15.7	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.0	3 7.9 8.3 6.0 1.2 15.8 17.0
Yea 195 195 195 195 195 195	ar 51 52 53 54 55 56 57	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0	Jul. 2 17.0 17.0 16.0 1.2 12.6 17.0 17.0	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5	Aug. 2 16.6 17.0 17.0 1.2 16.2 17.0 14.3 8.0	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 10.7	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4	1 8.7 9.0 1.2 12.8 17.0 11.6	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 0.0	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1
Yea 195 195 195 195 195 195 195 195	ar 51 52 53 54 55 56 57 58	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0	Jul. 2 17.0 16.0 1.2 12.6 17.0 17.0 10.7 17.0	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0	Aug. 2 16.6 17.0 17.0 1.2 16.2 17.0 14.3 8.9	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8 8.9	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8 17.0	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0	2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1
Yea 195 195 195 195 195 195 195 195	ar 51 52 53 54 55 56 57 58 59 59	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6	Jul. 2 17.0 17.0 16.0 1.2 12.6 17.0 17.0 10.7 17.0	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0	Aug. 2 16.6 17.0 17.0 1.2 16.2 17.0 14.3 8.9 16.9	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8 8.9 16.9	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8 17.0	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.2	3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6
Yea 195 195 195 195 195 195 195 195	ar 51 52 53 54 55 56 57 58 59 60	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7	Jul. 2 17.0 16.0 1.2 12.6 17.0 17.0 17.0 17.0 15.5 14.2	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.0	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0	Aug. 2 16.6 17.0 17.0 1.2 16.2 17.0 14.3 8.9 16.9 17.0 16.1	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8 8.9 16.9 17.0	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8 17.0 16.9 15.6	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0 17.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 16.8	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.2	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2 8.6	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 ° c
Yea 195 195 195 195 195 195 195 195	ar 51 52 53 55 56 57 58 59 60 61 82	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7 12.3	Jul. 2 17.0 16.0 1.2 12.6 17.0 17.0 17.0 15.5 14.2 0.0	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0	Aug. 2 16.6 17.0 17.0 16.2 17.0 14.3 8.9 16.9 17.0 16.1 16.0	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8 8.9 16.9 17.0 15.5 14.2	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8 17.0 16.9 15.6 16.5	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0 17.0 17.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 16.8 12.0	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2 14.9 12.0	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.3 10.4	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 11.4	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8 0	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2 8.6 7.6	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6
Yea 195 195 195 195 195 195 195 195	ar 51 52 53 54 55 56 57 58 59 60 61 32 83	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7 12.3 10.0 2 2	Jul. 2 17.0 16.0 1.2 12.6 17.0 10.7 17.0 15.5 14.2 9.0 57	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6 4	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0 27	Aug. 2 16.6 17.0 17.0 1.2 16.2 17.0 14.3 8.9 16.9 17.0 16.1 16.0 1,2	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8 8.9 16.9 17.0 15.5 14.3 12	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8 17.0 16.9 15.6 16.5 0 8	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0 17.0 15.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 16.8 12.9	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2 14.9 13.0	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.3 10.4	1 8.7 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 11.4 9.8	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2 9.2	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1 8.9	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8.9 9.6	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2 8.6 7.6 0.1	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6
Yea 195 195 195 195 195 195 195 195 196 196 196	ar 51 52 53 54 55 56 57 58 59 60 61 52 63 84	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7 12.3 10.0 2.2 3.4	Jul. 2 17.0 17.0 16.0 1.2 12.6 17.0 10.7 17.0 15.5 14.2 9.0 5.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6 4.8 4.8	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	Aug. 2 16.6 17.0 1.2 16.2 17.0 14.3 8.9 16.9 17.0 16.1 16.0 1.2 2 7	3 14.7 16.9 15.6 1.2 17.0 14.8 8.9 16.9 17.0 15.5 14.3 12.2 17.0 15.5 14.3 1.2 97	1 12.1 17.0 14.8 1.2 17.0 17.0 12.8 16.8 17.0 16.9 15.6 16.5 9.8 9.8	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 16.8 12.9 15.8 6 6	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2 14.9 13.0 14.2 5 5	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9 12.1	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.3 10.4 10.6 2,6	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 11.4 9.8 10.4 2.6	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2 9.2 9.2	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1 8.9 9.2 1.2	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8.9 9.6	Dec. 2 8.0 7.7 6.8 1.2 16.5 10.9 7.0 11.7 11.2 8.6 7.6 9.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6 8.3 12
Yea 195 195 195 195 195 195 195 195 196 196 196	ar 51 52 53 54 55 56 57 58 59 60 61 52 63 64 65	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 13.6 15.7 12.3 10.0 2.2 3.4	Jul. 2 17.0 16.0 1.2 12.6 17.0 17.0 17.0 17.0 15.5 14.2 9.0 5.7 2.3	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6 4.8 1.2	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0 17.0 17.0 17.1 2.7 1.2	Aug 2 16.6 17.0 1.2 16.2 17.0 14.3 8.9 16.9 17.0 16.1 16.0 1.2 3.7 17.0	3 14.7 16.9 15.6 1.2 17.0 17.0 14.8 8.9 16.9 17.0 15.5 14.3 1.2 9.7 15.7	1 12.1 17.0 14.8 1.2 17.0 12.8 16.8 17.0 12.8 16.9 15.6 16.5 9.8 8.8 8	Sep. 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 10.7 16.8 17.0 17.0 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 17.0 10	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 15.8 6.6 10.2	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2 14.9 13.0 14.2 5.5 9	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9 12.1 4.2 7	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.3 10.4 10.6 3.6 7.0	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 11.4 9.8 10.4 2.6 6	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2 9.2 1.2 6.0	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1 8.9 9.2 1.2 6.0	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8.9 9.6 1.2	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2 8.6 7.6 9.1 1.2 2.1	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6 8.3 1.2 2.0
Yea 195 195 195 195 195 195 195 196 196 196 196	ar 51 52 53 54 55 56 57 58 59 60 61 52 53 54 55 56 57 58 59 60 61 52 53 64 65 36	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7 12.3 10.0 2.2 3.4 9.9 9	Jul. 2 17.0 17.0 16.0 1.2 12.6 17.0 17.0 10.7 17.0 15.5 14.2 9.0 5.7 2.3 10.2 15.2 10.2 10.2 15.5 14.2 10.0 15.5 14.2 15.5 15.5 14.2 15.5 14.2 15.5 10.2 15.5 10.2 10.2 15.5 10.2 10.2 10.5 1	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6 4.8 1.2 14.9	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0 17.0 17.0 17.2 13.1 12.6	Aug 2 16-6 17.0 17.0 1.2 16.2 17.0 14.3 8.9 16.9 17.0 16.1 16.0 1.2 3.7 17.0	3 14.7 16.9 15.6 1.2 17.0 14.8 8.9 16.9 17.0 14.8 8.9 16.9 17.0 14.8 8.9 16.9 17.0 15.5 14.3 1.2 9.7 15.7 16.9	1 12.1 17.0 14.8 1.2 17.0 12.8 16.8 17.0 16.9 15.6 16.5 9.8 8.8 14.6 16.2	Sep. 9.9 16.4 13.0 1.2 17.0 17.0 10.7 16.8 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.0 17.0 17.0 17.0 17.0 10.7 10	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 15.8 6.6 10.2 15.4	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2 14.9 13.0 14.2 5.5 9.9 14.1	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9 12.1 4.2 7.8	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.3 10.4 10.6 3.6 7.0 10.5	1 8.7 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 9.8 10.4 2.6 6.1 10.2	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2 9.2 1.2 6.0 8 0	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1 8.9 9.2 1.2 6.0 8.9	1 8.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8.9 9.6 1.2 4.5 7.0	Dec. 2 8.0 7.7 6.8 1.2 16.5 10.9 7.0 11.7 11.2 8.6 9.1 1.2 3.1 7.2	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6 8.3 1.2 3.0 7.2
Yea 195 195 195 195 195 195 195 196 196 196 196	ar 51 52 53 54 55 56 57 58 59 60 61 52 53 64 65 66 67	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7 12.3 10.0 2.2 3.4 9.9 15.2 13.6	Jul. 2 17.0 17.0 16.0 1.2 12.6 17.0 17.0 10.7 17.0 15.5 14.2 9.0 5.7 2.3 10.2 15.3 14.0	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6 4.8 1.2 14.9 14.9 14.9	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0 17.0 17.0 17.2 13.1 12.6 16.7	Aug 2 16.6 17.0 1.2 16.2 17.0 14.3 8.9 16.9 17.0 16.1 16.0 1.2 3.7 17.0 17.0 17.0	3 14.7 16.9 15.6 1.2 17.0 14.8 8.9 16.9 17.0 14.8 8.9 16.9 17.0 14.8 8.9 16.9 17.0 15.5 14.3 1.2 9.7 15.7 16.9 13.3	1 12.1 17.0 14.8 1.2 17.0 12.8 16.8 17.0 16.9 15.6 16.5 9.8 8.8 14.6 16.2 11.7	Sep. 2 9.9 16.4 13.0 1.2 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 16.8 12.9 15.8 6.6 10.2 15.4	1 7.2 12.2 11.8 1.2 15.1 16.2 10.7 13.9 14.6 15.2 14.9 13.0 14.2 5.5 9.9 14.1 6 2	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9 12.1 4.2 7.8 12.0 4.9	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 10.4 10.6 3.6 7.0 10.5	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 11.4 9.8 10.4 2.6 6.1 10.3 2.2	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2 9.2 1.2 6.0 8.9 3.2	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1 8.9 9.2 1.2 6.0 8.8 1.0	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8.9 9.6 1.2 4.5 7.9	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2 8.6 7.6 9.1 1.2 3.1 7.3 1.0	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6 8.3 1.2 3.0 7.2 1.0
Yea 195 195 195 195 195 195 195 195 196 196 196 196 196	ar 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	1 17.0 6.9 17.0 1.2 10.1 16.2 17.0 10.0 13.6 15.7 12.3 10.0 2.2 3.4 9.9 15.2 13.6 17.0	Jul. 2 17.0 17.0 16.0 1.2 12.6 17.0 10.7 17.0 10.7 17.0 15.5 14.2 9.0 5.7 2.3 10.2 15.3 14.0 16.9 17.0 17.0 17.0 17.0 12.6 17.0 12.6 17.0 12.6 17.0 12.6 17.0 17.0 12.6 17.0 12.6 17.0 17.0 12.6 17.0 17.0 17.0 17.0 12.6 17.0 15.5 14.2 10.2 14.2 10.2 10.2 15.3 10.2 15.5 14.0 15.5 14.0 15.5 14.0 15.5 14.0 15.5 15.5 14.0 15.5 1	3 15.4 16.9 15.7 1.2 16.9 17.0 15.8 10.7 16.4 17.0 15.9 13.6 4.8 1.2 14.9 14.9 15.2 15.0	1 15.7 17.0 13.1 1.2 15.1 17.0 15.5 11.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	Aug. 2 16.6 17.0 1.2 16.2 17.0 14.3 8.9 16.9 16.9 16.1 16.0 1.2 3.7 17.0 17.0 15.1 15.1	3 14.7 16.9 15.6 1.2 17.0 14.7 16.9 15.5 14.3 1.2 9.7 15.7 16.9 13.3 16.6	1 12.1 17.0 14.8 1.2 17.0 12.8 16.8 17.0 16.9 15.6 16.5 9.8 8.8 14.6 16.2 11.7 14.7	Sep. 9.9 16.4 13.0 1.2 17.0 17.0 17.0 17.0 17.0 17.0 17.0 15.0 17.0 15.0 17.0 8.5 12.4 17.0 8.8 12.4 17.0 8.8 12.4 17.0 17.0 17.0 17.0 15.0 17.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 17.0 10.7 15.0 17.0 15.0 17.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0 15.0 17.0	3 8.9 14.5 11.0 1.2 16.3 17.0 9.8 14.9 16.4 16.9 15.8 6.6 10.2 15.4 8.4 10.5	1 7.2 12.2 11.8 1.2 15.1 16.2 13.9 14.6 15.2 14.9 13.0 14.2 5.5 9.9 14.1 6.2 10.3	Oct. 2 9.5 10.6 9.8 1.2 13.4 15.7 10.9 11.8 13.5 13.3 13.7 11.9 12.1 4.2 7.8 12.0 4.9 9.1	3 9.3 9.0 9.1 1.2 12.6 17.0 11.4 11.0 12.1 12.8 12.3 10.4 10.6 3.6 7.0 10.5 4.3 7.5	1 8.7 9.0 1.2 12.8 17.0 11.6 10.0 11.9 11.4 11.4 9.8 10.4 2.6 6.1 10.3 3.3 7.3	Nov. 2 8.9 8.6 8.4 1.2 13.5 17.0 11.5 9.9 12.7 12.0 11.4 10.2 9.2 1.2 6.0 8.9 3.3 6.3	3 8.2 7.7 8.4 1.2 15.2 16.0 11.5 8.5 13.0 12.2 10.1 8.9 9.2 1.2 6.0 8.8 1.9 57	1 8.6 7.6 6.9 1.2 15.1 15.7 11.3 7.0 11.7 11.0 10.0 8.9 9.6 1.2 4.5 7.9 1.9 4.8	Dec. 2 8.0 7.7 6.8 1.2 15.2 16.5 10.9 7.0 11.7 11.2 8.6 7.6 9.1 1.2 3.1 7.3 1.9 4.2	3 7.9 8.3 6.0 1.2 15.8 17.0 11.4 7.1 11.6 11.3 8.6 7.6 8.3 1.2 3.0 7.2 1.9 4.1

Table 5. Storage Value Recurrences of Minteh Reservoir from July 1, 1951 to end of 1969

Remarks: 1. Value of storage in million M^3

2. Reservoir-full storoge at 17.0

3. Reservoir-empty storage at 1.2

- 15 -

In additional to these 5 curves, there is also Rule Curve 6 which is the original rule curve worked out in the planning stage of the Minteh reservoir project.

Numerical values of the six Rule Curves are listed in Table 6.

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	the second s		and the second		التحدة المحمدة المتهيجين بالمهتور بالأخبسية
Ν	Curve 1	Curve 2	Curve 3	Curve 4	Curve 5	Curve 6
1	17,000,000	1,288,238	11,537,459	7,978,797	3,756,469	8,500,000
2	17,000,000	1,247,883	11,038,076	7,869,011	3,815,962	8,500,000
3	17,000,000	1,763,273	11,071,409	7,868,047	3,742,637	7 ,8 00,000
4	17,000,000	2,501,561	11,258,068	8,085,696	5,589,379	8,000,000
5	17,000,000	2,365,718	13,915,199	9,300,737	5,530,871	8,800,000
6	17,000,000	2,345,032	15,662,358	10,445,407	5,566,854	9,200,000
7	17,000,000	1,579,627	16,181,410	9,772,529	6,429,716	9,790,000
8	17,000,000	3,296,907	15,382,353	9,261,582	5,288,085	9,500,000
9	17,000,000	3,177,406	16,133,581	9,047,466	4,058,290	9,300,000
10	17,000,000	1,638,360	15,099,877	10,046,603	3,883,915	9,200,000
11	17,000,000	1,276,193	14,224,989	9,516,533	2,522,761	9,000,000
12	17,000,000	1,315,450	14,990,852	10,198,907	1,899,343	7,550,000
13	17,000,000	1,903,397	13,776,845	8,164,325	1,727,547	4,700,000
14	17,000,000	5,306,725	12,380,815	7,205,575	1,200,000	3,000,000
15	17,000,000	4,234,370	17,000,000	8,550,903	4,674,890	2,850,000
16	17,000,000	3,340,379	17,000,000	12,739,354	6,003,349	2,500,000
17	17,000,000	2,123,214	17,000,000	14,037,150	5,696,674	1,200,000
18	17,000,000	1,695,550	16,285,901	12,423,642	6,936,485	1,900,000
19	17,000,000	2,289,291	16,884,884	13,673,885	9,999,513	3,400,000
20	17,000,000	2,355,780	17,000,000	15,410,039	10,616,033	13,450,000
21	17,000,000	4,869,510	16,722,265	15,607,508	14,632,169	13,450,000
22	17,000,000	2,775,833	17,000,000	16,169,903	13,012,525	13,450,000
23	17,000,000	3,761,126	17,000,000	16,453,653	14,911,542	13,450,000
24	17,000,000	8,986,723	16,936,975	15,602,212	13,696,809	13,450,000
25	17,000,000	8,859,907	16,982,030	15,250,494	12,719,702	11,800,000
26	17,000,000	8,500,531	17,000,000	15,761,817	12,044,797	10,700,000
27	17,000,000	6,666,173	16,582,938	14,758,304	10,168,847	10,600,000
28	16,971,729	5,585,296	14,991,511	13,478,169	10,247,225	10,300,000
29	16,430,520	4,292,069	13,511,668	11,873,846	9,427,357	10,200,000
30	17,000,000	3,648,090	12,439,989	10,592,682	8,665,495	9,790,000
31	17,000,000	2,690,009	11,687,804	10,186,509	8,377,095	9,400,000
32	17,000,000	1,258,245	12,199,831	9,600,714	7,943,805	9,300,000
33	16,079,077	1,982,282	12,460,152	8,906,662	7,280,260	8,650,000
34	15,733,737	1,922,446	11,431,345	8,798,583	6,436,924	8,650,000
35	16,503,218	1,931,572	11,369,208	7,915,083	6,166,960	8,500,000
36	17,000,000	1,915,328	11,506,382	8,128,568	5 , 596,581	8,500,000

Table 6. Rule Curves for Minteh Reservoir

- 16 -

12. Reservoir operation under the guidance of rule curve

Starting from Rule Curve 1, each of the six curves is successively used to guide the reservoir operation hindcast calculations. A part of a month is taken up as the unit period in calculation.

For a part of month in consideration, the storage at the beginning of period is first looked up and is compared with the Rule Curve value of the same period. Two cases may happen:

- Case 1: S≥RC (the storage is greater than or equal to the rule curve value) in this case, the reservoir release of this period is made equal to the whole amount of irrigation, domestic and industrial requirements.
- Case 2: S<RC (the storage is less than the rule curve value) in this case, a reduction of 30% on the irrigation requirement is made, but there will be no reduction on domestic and industrial requirements. Hence the reservoir release of the period equals to the 70% of the irrigation requirement plus the 100% of domestic and industrial requirements.

Substracting the reservoir release from the net inflow gives the difference in storage, which is then added to the storage at the beginning of the period to give the storage at the end of the period.

Four additional items are calculated as follows:

- (a) Utilized inflow —equals to the amount of net inflow if there is no overflow occurred over the spillway, or equals to the amount of net inflow minus spillage if there is overflow.
- (b) Spillage —when the storage at the end of the period is calculated, compare it with the reservoir-full capacity. If the former is larger, overflow occurs, then the amount of spillage is the difference of the former and the latter.

 (c) Deficiency —deficiency occurs when the calculated storage at the end of the period falls below the reservoirempty capacity. The amount of deficiency equals to the difference of the former and the latter.

(d) Time of deficiency—if deficiency occurs in the period, the time of deficiency is made equal to 1.

The above steps are repeated for every part of all months in the 19 year study period. This forms one set of calculations. For 6 rule curves, 6 sets of calculations are made.

The result of calculations for every part, as well as the yearly and total sums are printed out. The following attached Table 7 are six sample printout sheets for these six rule curves.

DEFICIENCY DI		(CUB. M.)	0	0	0	0 0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0
AMDUNT OF	UTILIZED INFLOM	(CUB.M.)	999* 466	420.233	959,680	2,495,232	1,983;672	628,992	321,408	161.568	223,776	209,088	3,617,568	688, 608	349,056	513,216	357,696	605,664	310,176	969,408	15.714.510
SPILLAGE		{ C'JB, M. }	1,771,379	727,159	c	C	3,867,336	0	c	0	ç	с	0	c	0	c	C	0	C	0	6.365.874
STURAGE	•	(CUB. M.)	0 17,000,000	0 17,000,000	0 15,446,860	0 16,277,624	0-17,000,000	0 15.093.944	0 13,316,556	0 11,702,144	0 10,947,722	9 9,781,888	0 12,341,771	0 12,343,967	0 11,911,375	0 12,134,903	7 11,673,408	7-11-981-849	8 11,600,747	0 11,713,244	
UPERALION	CURVE	(CUB.M.)	17,000,00	17.000.00	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	16,971,72	16,430,52	17.000.000	17,000,000	17.000.00	16,079,07	15,733,73	16,503,21	17,000,000	
NET	RESERVOIR	(CUB.M.)	2,770,848	1.147.392	8.59, 680	2.495.232	5,851,008	628.992	321,408	161.568	223, 776	209,088	3,617,568	688. 608	349,056	513.216	357,696	605,664	310,176	969.408	22_0A0_384
REQUIRED	RESERVOIR Release	(CUB.M.)	948,267	356.944	2,342,584	1.615.923	1,218,623	2.462.718	2,040,158	1.722.769	950,151	1,337,606	1,027,356	654,853	745.727	267,000	791,620	267,000	658,338	832,084	20-240-221
DOMESTIC 6	INDUSTRY REQUIREMENT	(CUB. M.)	267,000	267.000	293,700	267,000	267,000	293.700	267,000	267,000	267,000	267.000	267,000	293,700	267,000	267.000	267,000	267,000	267,000	293,700	4-912-800
IRRIGATION	REQUIREMENT	(CUB.M.)	681,267	89.944	2,048,884	1,927,034	1,359,462	2.169.018	2,533,084	2.079.671	975,930	1.529.438	1,086,223	515,933	683,896	0	749,458	0	559,769	769,120	19.758-131
O YEAR PT			1951 19	1951 20	1951 21	1951 22	1951 23	1951 24	1951 25	1951 26	1951 27	1951 28	1951 29	1951 30	1951 31	1951 32	1951 33	1951 34	1951 35	1951 36	

FICLENCY DT		.UB. M.)	00		0 0	0 0	0	0	0	0 °	0	0	C O	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0 0	0	0	0 0
AMDUNT OF DE	UTILIZEÓ INFLOM	(CUB+M+) (C	673,920	266.112	832, 896	1,656,283	705,024	425,098	463.104	902,016	4,964,973	883, 872	618.624	123,552	254.016	603,072	1,636,415	730,080	3,793,824	209,088	3.395.227	1,540,058	1,610,944	2,223,918	1,078,777	1,190,279	2.256.479	402,624	95,040	17,280	19,008	105,408	167.616	143,424	273+024	349,920	848.448	36.181.003
SPTLLAGE		(CUB.M.)	0	c	0	6	0	C	6	6	1,221,143	0	G	0	0	ç	c	C	6	0	7.749.509	4,385,254	1,218,656	322,290	3,084,839	1,013,785	519.553	0	0	0	c	c	C	ð	c	0	0	19.515.029
STURACE		(CUB.M.)	12,102,710	12.589.184	13,134,708	14,502,789	14,943,453	14,660,097	13.844.404	12,567,471	17,000,000	15,982,326	14,895,818	13,034,591	11.496.777	11,105,449	12,226,390	11,580,910	14.655.468	13,987,720	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17.000.000	15,059,845	13,400,753	12,213,558	10,949,347	10,680,804	10.556.382	9,876,295	9.864.360	9,927,592	10,465,317	
ODED AT ION	CURVE	(CUB. M.)	17,000,000	17-000-000	17-000-000	17,000,000	17,000,000	17,000,000	17.000.000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	I.7,000,000	17-000-000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17,000,000	17.000.000	17,000,000	16+971 • 729	I6,430,520	17,000,000	17,000,000	17.000.000	16,079,077	15,733,737	16,503,218	17,000,000	
NET	RESERVOIR INFLOW	(CUB+M+)	673,920	821 064	832.896	1,656,288	705,024	425,088	463.104	902,016	6,086,016	883,872	618,624	123,552	254,016	603,072	1.636.416	730,080	3,793,824	209,088	11.144.736	5,925,312	2,829,600	2,546,208	4,163,616	2,204,064	2.776.032	402,624	95,040	17,280	19,008	105,408	167,616	143,424	273,024	349,920	848,448	55.696.032
	RESERVOIR	(CUB.M.)	267,000	203-700	267.000	267,000	240.300	700,549	1.257,148	2,152,295	411,266	1,853,770	1.674.203	1,927,982	1,735,921	948,304	476.404	1,320,308	673,256	806,370	329,960	1,483,907	1.559.647	2,169,290	1,019,200	1,147,928	2.208.608	2,296,811	1,701,857	1,157,806	1,246,750	338,696	267,000	799,716	267,000	267,000	293,700	36.095.652
3 JILSINGU	INDUSTRY PEOLITPEMENT	(CUB. M.)	267,000	267.000	000-796	267.000	240.300	267,000	267+000	2 93, 700	267,000	267,000	267,000	267,000	267.000	293,700	267,000	267,000	267.000	267,000	267,000	293,700	267,000	267,000	293,700	267,000	267,000	267,000	267,000	267,000	293,700	267,000	267.000	267,000	267,000	267,000	293,700	9-772-200
	REQUIREMENT	(CUB . M .)	0			0		619,356	1.414.498	2,655,136	206,095	1,586,770	2.010.291	2, 372, 832	2.098.459	935,149	299.149	1.505.441	580.367	771,244	89.944	1,190,207	1.292.647	1,902,290	725,500	880,928	1.941.608	2,029,811	2.049.796	1,272,580	1.361.501	102.424	0	761,024	0	ò	a	32-655-047
1	F		1952 1	1952 2	1052 5	1952 5	1952 6	1952 7	1952 8	1952 9	1952 10	1952 11	1952 12	1952 13	1952 14	1952 15	1952 16	1952 17	1952 18	1952 19	1952 20	1952 21	1952 22	1952 23	1952 24	1952 25	1952 26	1952 27	1952 28	1952 29	1952 30	1952 31	1952 32	1952 33	1952 34	1952 35	1952 36	

20 -

	Ы	-			0	9	0 0	2	2	2	0	d	0	Ó	0	0	c	c	c	c	•	0		0	
	DEFICIENCY		(CUB. M.)		0)	0 (2 0	9	0	0	0	0	G	• c				• c		• c		0	
	AMDUNT OF	ULILIZED	(CUB.M.)		999,469	420.233	859,680	2,495,232	2,968,820	628,992	321,408	161.568	223-776	209-088	2 417 540	000111010 0007-007	9001000		257 204	20190100	1001CAC	0114016	0071707	16.699.658	
	SPILLAGE		(CUB. M.)		1,771,379	727,159	0	C	2,392,189	0	0	c	c					- c		5 9	0		6	5 380-726	
	STURAGE		(CIR.M.)		17,000,000	17,000,000	15,446,860	15,699,513	17,000,000	15,093,944	12.556.630	10.320.107	0.011.011		140221491	9,891,733	9.142.989	9,109,849	913361620	8,654,179	8,967,329	8,423,266	8,309,140		
	OPERATION	CURVE	CIR N. J		2.289.291	2.355.780	4,869,510	2,775,833	3,761,126	8.986.723	8-859-907			01000113	5,585,295	4,292,065	3,648,090	2,690,009	1.258:245	1,982,282	1.922.446	1,931,572	1,915,328		
	NET	RESERVOIR	INTLUM	1.000.014.1	2.770.848	1 - 1 47. 392	859.680	2.495.232	5.851.008	628.992	201-408		000-101	223+776	209-088	3,617,568	689,608	349,056	513.216	357,696	605+664	310,176	969.408		22,080,384
	REOUIRED	RESERVOIR	RELEASE	1,000.00.0	948-267	356.046	2.342.584	2.194.034	1-626-462	2.467.718	2 000-004	100400047	2+340+011	I 242 930	1.796.438	1,353,223	809.633	950 1896	267,000	1,016,458	2675000	826, 769	1.062.820		24.670.931
	DOMESTIC &	INDUSTRY	REQUIREMENT	I CUB. M. J	000 276		202-200	267,000	247-000	202 200	000 272	201100	267.000	267,000	267,000	267,000	293, 700	267,000	267.000	267,000	267,000	267,000	293, 700		4.912.800
	TRR IGATION	REQUIREMENT		(CUB.M.)	72 101	1074100	7 040,004	YEU 200 1	1 360 443	70111111111111111111111111111111111111	01020107	2,933,084	2.079.671	975,930	1.529.438	1,086,223	515.933	683+896	0	749.458	0	559,769	769.120		19,758,131
_	VEAR PT					61 1061	102 1661	12 1661	1951 66	1771 23	142 1241	1951 25	1951 26	1951 27	1951 28	1951 29	1951 30	1951 31	1951 32	1951 33	1951 34	1951 35	1951 36		

- 21 —

DEFICIENCY UT		(CUB.M.)	0	0	0	0	ວ ວິ	0	5	0	0	0 0	0	0 0	0	0 0	000	0	0 0	0 0	0	0	0	0	0	ů ů	0	n c		0	5 0 5 0	0	0	0	0 0	0	0	0 0	0 0	
AMOUNT DF	UTILIZED INFLOW	(CUB.M.)	673,920	821.664	266,112	832, 996	1,656,288	705,024	425.089	463.104	902,016	6.086.016	893,872	519,624	123,552	254.016	603,072	1,636,416	730,080	3, 793, 924	209,088	10,070,258	1,540,059	1,510,944	2,223,918	1.078.777	1,190,279	2,220,479	479 204	95.040	17,280	19,008	105,408	167-616	143,424	2731024	349,920	948,448	44.077.177	
SPILLAGE	-	(609.4.)	c	0	c	6	c	c	c	6	c	6	c -	6	0	0	c	c	¢.	c	c	1.074.478	4, 395, 254	1,219,556	322,290	3, 184, 839	1,013,785	519.52	0		c		0	6	Ċ	6	c	0	11-618-855	
STORAGE		(CUB.M.)	8,701,731	9.240.675	9,195,037	9.743.941	11,115,403	11,563,925	11,091,607	9.854.952	7,780,299	13,383,355	12,371,735	10.686.387	8,123,659	5.963.761	5,314,025	6.360.522	5,282,072	8.201.402	7,322,505	17.000.000	17,000,000	17,000,000	17,000,000	17.000.000	17,000,000	17.000.000	15,059,845	12.785.814	11,222,961	9.547.438	9,250,693	9.128.140	8,221,547	8,211,403	8,276,603	8,815,985		
OPERATION	CURVE	(CUB.M.)	1,288,238	1.247.883	1,763,273	2,501,561	2,365,718	2,345,032	1,579,627	3.296.907	3,177,406	1.638,360	1,276,193	1,315,450	1,903,397	5 • 306 • 725	4.234.370	3,340,379	2,123,214	1.695.550	2,289,291	2,355,780	4,869,510	2,775,833	3,761,126	8,986,723	8,859,907	8-500-531	6,666,173	5,585,296	4,292,069	3,648,090	2,690,009	1.258.245	1,982,282	1,922,446	1,931,572	1,915,328		
NET	RE SERVOLR INFLOW	(CUB. M. I	673,920	821 • 664	266,112	832,896	1,656,288	705,024	425,088	463,104	902,016	6.086.016	883,872	618.624	123,552	254.016	603.072	1.636.416	730.080	7.793.824	209,088	11.144.736	5,925,312	2,829,600	2,546,208	4,163,616	2,204,064	2,176,032	402,624	95,040	17,280	19,008	105,408	167.616	143,424	273,024	349,920	848,448		JENEREDECC
REGULARED	RESERVOIR Delease	(CUB.M.)	267,000	267.000	293 • 700	267,000	267,000	240,300	336,356	1.681.498	2,948,836	473.095	1.853.770	192.775.5	2.639.832	7.365.450	1.228.849	566.149	1.772.44]	742-749	1.038.244	356.944	1,483,907	1.559.647	2,169,290	1,019,200	1,147,928	2.208.608	2,296,811	2,316,796	1,539,580	1.655,201	369.424	267.000	1.028.024	267,000	267,000	293, 700		42942124524
DOMESTIC &	INDUSTRY DE OUTDEMENT	(CUB. M.)	267.000	267.000	293.700	267.000	267,000	240.300	267.000	267.000	293+700	267.000	267,000	267.000	267-000	267.000	203.700	247.000	000-192	267-000	267.000	267.000	293.700	267.000	267,000	293,700	267,000	267.000	267,000	267,000	267,000	293.700	267.000	267.000	267,000	267.000	267.000	293, 700		9,777,200
BP ICATION	EQUIREMENT	(cue.M.)	c) c	0	0	0		619.356	1.414.498	2.655.136	206-095	1.586.770	7,010,201	7.272.922	2 000 VED	1121212		1.505.441	11110003 171003	775-177	80.944	1-190-207	1-292-647	1.902.290	725.500	880,928	1.941.608	2.029.811	2.049.796	1.272.580	1.161.501	102.424	0	761-024	0	0	. 0		32.655.047
VEAD DT 1	× ×	~	1052 1	1057 2	1050 3	1952 4	1952 5	1952 6	1952 7	1957 8	1957 9	1052 10	1052 11	11 2//T	1052 12		1472 14	CT 7661	1062 17	11 766T	1952 10	1962 20	1952 21	1062 22	1952 23	1952 24	1952 25	1952 26	1952 27	1952 28	1952 29	1952 30	1962 31	1952 32	1952 33	1962 34	1962 35	1952 36		

- 22 -

י. ד

0 0 0 000 Q 0 0 0 000 ol 00 0 00 \circ 0 000 od 0 d a d 0 Ó a Q Ы 0 c c DEFICIENCY (CUB. M. 1 1,190,279 902,016 37.839.488 821.664 266,112 832, 896 1,656,288 983,872 618,524 123,552 254.015 \$636.416 730,080 3,793,824 209,088 4.685.778 1,540,058 \$610,944 2,223,918 1,978,777 .256.479 95.040 17,289 19,008 105,408 43.424 3499920 848,448 673,920 705,024 425,088 463,104 5,232,807 603,072 402,624 67-616 273,024 AMDUNT OF UTILIZED (CUB. N.) LNFLOH \mathbf{c} C c 0 oc C C c c 0 c ¢ o ¢ \mathbf{C} 0 C 0 C C ¢ 853,209 ¢ 6.453.958 4,385,254 1,218,656 322,290 3.084.839 1,013,785 17.856.544 519.553 (CUB. N.) SPILLAGE 11,537,459 11,731,716 1.038.076 12.267.763 16,181,410 14,291,025 15,099,877 17,000,000 14,224,989 15,982,326 13,776,845 11,721,016 17,000,000 10,280,270 16,884,884 12,694,156 16,722,265 17,000,000 7,000,000 17,000,000 6,936,975 17,000,000 16,982,030 17,000,000 16,582,938 15,059,845 9,266,395 11.071.409 12,218,922 1,258,068 12,764,793 16,133,581 12,199,178 4.990.852 14,292,730 9,798,425 7,000,000 10,921,986 6,285,901 13,357,969 7.000.000 17.000.000 7.000.000 17.000.000 17.000.000 4,991,511 12,785,814 13,511,668 11,604,735 11,687,804 10,069,378 9.945.736 9,255,080 9,318,995 3,915,199 14,133,227 5.662.358 14.579.205 2.380.815 10.186.596 9.857.295 2,439,989 10,336,811 13.475.674 (CUB. N.) STORAGE 5.382.353 17,000,000 7.000.000 11,369,208 12,460,152 245,154,1 11,506,382 2.199.83 **DPERATION** (CUB.M.) CURVE 123,552 4.163,616 95,040 17,280 143,424 883,872 2,829,600 2,546,208 2,204,064 402,624 19.008 05,408 273,024 349,920 848,448 55.696.032 832,896 1,656,288 425,088 902,016 730,080 209,088 1.144.736 5,925,312 67.616 821,664 266,112 105.024 463.104 6,086,016 618-624 603,072 •636•416 3,793,824 .776.032 673,920 NET RESERVOIR (CUB.M.) CNELOW 267,000 38,025,529 199,716 2,169,290 1,147,928 267,000 67,000 267,000 240,300 700,549 .257.148 2,152,295 411,266 1,853,770 2,639,332 948,304 476,404 1,320,806 673,256 306,370 329.960 1,483,907 1559,647 1,019,200 2.208.608 2,296,311 2,316,796 1,157,806 .246.750 338,696 267.000 267,000 267,000 2 93 4 700 2,277,291 .735.921 RESERVOIR RFOUTRED (CUB.M.) RELEASE REQUIREMENT DAMESTIC **INDUSTRY** (CUB. N.) 267,000 267,000 293,700 267,000 267,000 267,000 32.655.047 9.772.200 267,000 267,000 293,700 267,000 267,000 267.000 267,000 293, 700 267.000 267,000 267,000 267,000 293,700 267,000 267.000 267,000 267,000 267,000 293,700 267,000 240,300 267,000 293,700 267,000 267,000 293, 700 267.000 267-000 267,000 267,000 1,272,580 ø c 2,655,136 0 o 0 0 q 619,356 414.498 1,586,770 2,372,832 .098.459 935,149 299.149 1,505,441 580,367 771,244 89.944 1,190,207 1,292,647 1,902,290 725.500 880,928 2,049,796 761,024 REQUIREMENT 206.095 .941.608 2,029,811 192,010,291 102,424 IRRIGATION (CUB.M.) 1952 21 1952 24 30 34 5 18 1952 28 33 O YEAR PI σ 2 2 Ê 1952 19 1952 23 27 1952 31 32 35 36 1952 11 952 14 952 16 1952 17 1952 20 20 1952 952 952 1952 952 1952 1952 952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 952 1952

24

	10			0	•	0	0	0	0	0	0	0	0	o	0	0	•	0.	0	0	0	•
	DEF IC LENCY		(CUB. M.)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0
	AMOUNT: OF	UTILIZED INFLOW	(CUB. M.)	695°666	420,233	829,680	2,495,232	1,983,672	528, 992	321,408	161,568	223,776	209,088	3,617,568	688, 608	349,056	513,216	357,696	605, 564	310,176	969,408	15,714,510
	SPILLAGE		(CU3.M.)	1,771,379	727,159	6	c	3,857,335	C	¢	C	0	۲ ۲	0	¢	Ġ	6	6	0	0	0	6,365,874
•	OPERATION STORAGE	CURVE	(CUB.M.) (CUB.M.)	13,673,885 17,000,000	15,410,039 17,000,000	15,607,508 15,446,860	16,169,903 16,277,624	16,453,653 17,000,000	15,602,212 15,093,944	15,250,494 13,316,556	15,761,817 11,702,144	14,758,304 10,947,722	13,478,169 9,781,888	11,873,846 12,341,771	10,592,682 12,189,187	10,186,509 11,551,685	9,600,714 11,775,660	8,906,662 11,089,815	8,798,583 11,399,249	7,915,083 10,851,232	8,128,568 10,734,030	
	NET	RESERVOIR TNELOW	(CUB.M.)	2,770,848	1,147,392	859,680	2,495,232	5,851,008	628,992	321,408	161,568	223, 776	209,088	3,617,568	688,608	349,056	513,216	357,696	605,664	310,176	969,408	22,080,384
	REQUIRED	RESERVOIR T RFLFASE	(CUB.M.)	948,267	356,944	2,342,584	1,615,923	1,218,623	2,462,718	2,040,158	1,722,769	950,151	1,337,605	1,027,356	809,633	950*966	267,000	1,016,458	267,000	826,769	1,062,820	 21,223,675
	DOMESTIC &	INDUSTRY REQUIREMEN	(CUB. M.)	267,000	267,000	293,700	267,000	267,000	293,700	267,000	267,000	267,000	267,000	267,000	293, 700	267,000	267,000	267,000	267,000	267,000	293,700	 4,912,800
	IRRIGATION	REQUIREMENT	(CUB.M.)	681,267	89,944	2,048,884	1,927,034	1,359,462	2,169,018	2,533,084	2,079,671	026*226	1,529,438	1,086,223	515,933	683,896	0	749.458	0	559,769	769,120	19,758,131
	O YEAR PT			1951 19	1951 20	1951 21	1951 22	1951 23	1951 24	1951 25	1951 26	1951 27	1951 28	1951 29	1951 30	161261	1951 32	1951 33	1951 34	1951 35	1951 36.	

- 25 -

. DT			0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	5	0	0	0	0	0	0	0	0	
DEFICTENCY		(cue.m.)	o	0	0		0			0	0	0		•		0	0	0		0										0			0			0			0	
AMDUNT OF	UTILIZED INFLOW	(CilB. M.)	573,920	921,654	266,112	332,896	1,556,288	705,024	4 25, 098	453,104	902,016	6,086,015	983,872	618,624	123,552	254,016	5031072	1,636,415	730,080	3,793,824	209,088	6,493,169	1,540,058	1,610,944	2,223,918.	1,078,777	1,190,279	2,256,479	402,624	95,040	17,280	19,008	105,408	167,616	143,424	273,024	349,920	848,448	40.500.088	
SPIČLAGE		(CUB.M.)	Ċ	0	¢		6	6	C	0	0	с.	c	C	¢	6	0	0	0	0	C	4,451,557	4, 195, 254	1,218,656	322,290	3,034,939	1,013,785	519 ° 553	0	C	0	C	6	c	0	•	۲ ۲	0	15.195.944	
STORAGE		(CU8.M.)	7 11,124,432	1 11,661,099	7 11,612,889	6 12,159,370	7 13,523,377	7.13,974,858	5 13,501,212	2 12,262,255	6 10,190,627	3 15,784,944	3. 14,769,113	7 13,080,751	5 10,511,971	5 8,351,385	3 7,967,679	4 9,095,453	0 8,453,543	2 11,540,554	5 10,882,256	9 17,000,000	8 17,000,000	3 17,000,000	3 17,000,000	2 17,000,000.	4 17,000,000	7 17,000,000	4 15,059,845	9.12,785,814	6 11,222,961	2 9,547,438	9 9,281,421	4 9,158,833	2 8,252,190	3 8,242,007	3 8,307,163	8 8,846,509		
DPERATION	CURVE	(CUB. M.)	7,978,79	7,869,01	7,868,04	3,085,69	9,300,73	1.0,445,40	9,772,52	9,261,58	9 \$ 0 4 7 \$ 46	10,046,60	9,516,53	10,193,90	8,164,32	7,205,57	8,550,90	12,739,35	14,037,15	12,423,64	13,673,88	15,410,03	15,607,50	16,169,90	16,453,65	15,602,21	15,250,49	15,761,81	14,758,30	13,478,16	11,873,84	10,592,68	10,186,50	9,600,71	8,906,66	8,798,58	7,915,08	8,128,56		
NET	RESERVOIR	(CUB.M.)	673,920	821,664	266,112	832,896	1,656,288	705,024	425,088	463,104	902,016	6,086,016	883,372	618,624	123,552	254,016	. 603+072	1,636,416	730,080	3,793,824	209.4088	11,144,736	5,925,312	2,829,600	2,546,208	4,163,616	2,204,064	2,776,032	402,624	95,040	17,280	19,008	105,408	167,616	143,424	273,024	349,920	849,448	55.696.032	3421000100
REGUIRED	RESERVOIR Release	(CUB.M.)	267,000	267,000	2 93 , 700	267,000	267,000	240, 300	886, 356	1,681,498	2,948,336	47.3,095	1,853,770	2,277,291.	2,639,332	2,365,459	348, 304	476,404	1,320,308	673,256	806,370	329,960	I,483, 307	1,559,647	2;169,290	1,019,200	1,147,928	2,208,608	2,296,311	2,316,796	1,539,580	1,655,201	338,696	267,000	1,028,024	267,000	267,000	293,700	41 -1 42 -1 27	7487754877
DOMESTIC &	INDUSTRY REQUIREMENT	(CUB. M.)	267,000	267,000	293,700	267,000	267,000	240,300	267,000	267,000	293,700	267,000	267,000	267,000	267,000	267,000	293, 700	267,000	267,000	267,000	267,000	267,000	293,700	267,000	267,000	293, 700	267,000	267,000	267,000	267,000	267,000	293, 700	267,000	267,000	267,000	267,000	267,000	293, 700	0.772.200	29 11 69 400
TRR TGAT TON	REQUIREMENT	(CUB.M.)	0	0	0	0	0	0	619,356	1,414,498	2,655,136	206,095	1,586,770	2,010,291	2,372,832	2,098,459	935.149	299.149	1,505,441	580,367	771.244	89 °944	1,190,207	1,292,647	1,902,290	725,500	880,928	1,941,608	2,029,811	2,049,796	1,272,580	1,361,501	102,424	0	761.024	0	0	0	33 486 A47	1 201000170
O VEAR DT			1952 1	1952 2	1952 3	1952 4	1952 5	1952 6	1952 7	1952 8	1952 9	1952 10	1952 11	1952 12	1952 13	1952 14	1952 15	1952 16	1952 17	1952 18	1952 19	1952 20	1952 21	1952 22	1952 23	1952 24	1952 25	1952 26	1952 27	1952 28	1952 29	1952 30	1952 31	1952 32	1952 33	1952 34	1952 35	1952 36		

- 26 -

ł

r nr			0 0	0	0	ن 0	0	0	0	0	0	0	0	0	0))	0	0	0	0	2
nee tr't EN	0E: 101 E	(CUB• M•)													•						
A MOUNT OF	UTILIZED INFLOM	(CUB.N.)	669 ⁴ 666	420,233	859,690	2,495,232	2,968,820	628,992	321,409	161,568	223,776	209,088	3,617,568	588,608	349,056	513,216	357, 595	605,664	310,176	969,408	16,699,658
	2M1LLA95	(0)3.4.)	1,771,379	727,159	C	0	2, 332, 193	C	¢	6	c	C	6	Ģ	0	6	C	Ċ	ί	0	5,330,726
	> I UKAISE	(CUB.M.)	3 17,000,000	3 17,000,000	9 15,446,860	5 15,699,513	2 17,000,000	9 15,093,944	2 12,556,630	7 10,320,107	7 9,274,947	5 8,112,329	7 10,675,339	5 10,525,446	5 9, 890, 996	5 10,116,875	0 9,433,379	4 9,745,302	0 9,199,966	1 9,084,794	
	CURVE	(CUB. M.)	15,999,51	10,616,03	14,632,16	13,012,52	14,911,54	13,496,80	12,719,70	12,044,79	10,168,84	10,247,22	9,427,35	8,665,49	8,377,09	7,943,80	7,280,26	6.436.92	6,166,96	5,596,58	-
	NET RESERVOIR INFLOM	(CUB.M.)	2.770.848	1.147.392	859,680	2,495,232	5,851,008	- 628,992	321,408	161,568	223, 176	209,088	3,617,568	688,608	349,056	513,216	357,696	605, 664	310,176	9691408	 22,080,384
	REQUIRED RESERVOIR T RELEASE	(.cub.M.)	948,267	356,944	2,342,584	2,194,034	1,626,462	2,462,718	2,800,084	2,346,671	1,242,930	1,337,606	1,027,356	809,633	950, 896	267, 300	1.016.458	267.000	826,769	1,062,320	 23,886,232
	DUMESTIC E INDUSTRY REQUITERMEN	(CUB.M.)	267,000	267,000	293,700	267,000	267,000	293,700	267.000	267,000	267,000	267.000	267,000	293, 700	267,000	267,000	267.000	267.000	267,000	293,700	4,912,800
	IRRIGATION REQUIREMENT	(CUB.M.)	681.267	946 * 68	2,048,884	1,927,034	1,359,462	2,169,018	2.533.084	2,079,671	975,930	1.529.438	1,086,223	515.933	683,896	0	749.458	0	559.769	759,120	19,758,131
	O YEAR PT		1951 19	1951 20	1951 21	1951 22	1951 23	1951 24	1951 25	1951 26	1951 27	1951 28	1951 29	1951 30	1951 31	1951 32	1951 33	1951 34	1951 35	1951 36	

- 27 -

ł

,,,,,,

CY DT	0 0 0 0 0 0 0 0					00000 0
DEFICIEN (CUB.M.)						
AMOUNT OF UTILIZED INFLOW (CUB.M.)	673,920 821,664 266,112 832,896	1,656,288 705,288 425,088 463,104 902,016	883,872 518,624 123,552 123,1552 254,016 603,072 603,072	1730,050 3,793,624 3,793,624 9,995,666 1,540,944 1,510,944	1,196,279 1,196,279 2,256,479 402,624 95,040 17,280 19,008 105,408	167,616 143,424 249,920 349,920 849,448 42,902,585
SP1LLAGE (CU3. M.)	6 C C C			2,249,070 4,385,254 1,219,556 322,290	2124, 539 1,013,785 1,013,785 1,0 0 0 0 0 0 0 0	0 0 0 0 0 0 12,773,447
ŠTURAGE (CUB•M•)	9,476,621 9,963,824 9,963,375 10,516,511	11,887,236 11,867,236 11,862,277 8,555,277 8,555,279	13,133,148 11,451,862 8,887,095 6,730,759 6,730,759 7,115,804	17,000,000 17,000,000 17,000,000 17,000,000 17,000,000	1(1,000,000 17,000,000 15,059,845 12,785,845 11,222,961 9,547,438 9,547,438	9,128,140 8,221,547 8,211,403 8,211,403 8,215,985 8,815,985
OPERATION CURVE (CUB.4.)	3,756,469 3,815,962 3,742,637 5,589,379	5,530,971 5,566,854 5,429,716 5,429,716 5,628,085 4,058,085	2,522,761 2,899,3761 1,727,547 1,720,600 4,674,890	5,696,674 5,696,674 6,936,485 9,999,513 10,616,033 14,632,169 13,012,525 13,012,525 14,632,169	13,699,809 12,119,702 12,119,702 10,168,847 10,168,847 10,168,847 10,168,847 10,5495 3,377,095	7,943,805 7,280,260 6,436,924 6,166,960 5,596,581
NET RESERVOIR INFLOW (CUB+M.)	673,920 821,664 266,112 832,396	1,656,288 1,656,288 425,024 463,104 902,016	883,872 618,624 123,552 254,016 603,072	1900,000 1730,000 3,793,824 209,088 11,10,088 11,44,735 5,925,512 2,829,600 2,546,208 2,546,208	4,1253,615 2,775,035 4,775,035 4,755,035 95,040 117,280 19,008 19,008	167,616 143,424 273,024 349,920 848,448 55,696,032
REQUIRED RESERVDIR RELEASE (CUB.M.)	267,000 267,000 293,700 267,000	240,300 240,300 240,356 886,356 1,681,498 2,948,335 2,948,335 2,72,005	1,853,770 2,277,291 2,639,332 2,365,459 1,228,849 1,228,849	1,772,441 673,256 673,256 806,370 806,370 806,370 1,483,996 1,483,997 1,559,647 1,559,647 1,559,647	1,019,200 1,147,328 2,218,608 2,216,011 2,316,796 1,553,580 1,553,580 1,655,201 1,655,424	267,900 1,028,024 267,000 267,000 293,700 293,700 41,994,778
DOMESTIC C INDUSTRY REQUIREMENT	267,000 267,000 293,700 267,000	267,000 240,300 267,000 267,000 293,700 293,700	267,000 267,000 267,000 267,000 267,000 293,700	261,000 267,000 267,000 267,000 267,000 267,000 267,000 267,000	2934 700 267,000 267,000 267,000 267,000 267,000 267,000 293,700 267,000	267,000 267,000 267,000 267,000 293,700 293,700 9,772,200
RR IGAT ION EQUIREMENT (CUB.M.)	0000	0 0 0 619,356 1,44,498 2,655,136 2,055,0136	2,008,770 2,008,770 2,008,770 2,372,91 2,372,832 2,098,459 2,098,459 2,098,459 2,098,459	1,505,441 771,244 89,944 1,190,207 1,292,647 1,902,290	725,500 1,941,608 2,049,196 2,049,796 1,2049,796 1,2049,796 1,212,580 1,361,501 102,424	761,024 0 0 32,655,047
0 YEAR PT I	1952 1 1952 2 1952 3 1952 4	1952 5 1952 5 1952 7 1952 8 1952 9	1952 11 1952 12 1952 13 1952 14 1952 14	1952 19 1952 19 1952 19 1952 20 1952 23 1952 23	1952 24 1952 25 1952 25 1952 28 1952 28 1952 30 1952 30	1952 32 1952 33 1952 34 1952 35 1952 35

- 28

DUNT OF DEFICIENCY DT	-LOW J9. M.) (CUB. M.)	999,469 0 0	4 20, 233 0 550 2 800 0 0	• +95 • 232	2,968,820 0	528,992 0 0	321,409	161,568 0 0	223,776 0 0	209,098 0 0	3.617.558 0 0	689,608 0.0	349,056 0 0	513,216 0 0	357,696 0 0	505,664 0 0	310,176 0 0	969,408	3,599,658 0 0	
SPILLAGE AMC	(CUB. N.) (CU	1,774,379	727,159		2,882,188	c	Ċ	0, 1,	ç	¢	с.	0	C	0	¢	0	¢,	c	5,330,726 14	
OPERATION STORAGE	(CUB.M.) (CUB.M.)	3,400,000 17,000,000	13,450,000 17,000,000	13,450,000 15,699,513	13,450,000 17,000,000	13,450,000 15,093,944	11,800,000 12,556,630	10,700,000 10,320,107	20,600,000 9,567,726	10,300,000 8,404,539	10,200,000 10,966,879	9,790,000 10,816,525	9,400,000 10,181,597	9,300,000 10,407,168	8,650,000 9,723,288	8,650,000 10,034,769	8,500,000 9,483,976	8+500+000 9,373,440		
NET RESERVOIR	INFLOW (CUB.M.)	2,770,848	1,147,392	2,495,232	5,851,008	628,992	321,408	161,568	223, 776	209,088	3.,617,568	688,608	349,056	, 513,216	357,696	605,664	31,0,176	969,408	22,080,384	
MINU REQUIRED RESERVOIR	r RELEASE (CUB.M.)	948,267	356, 344	2,194,034	1,626,462	2,462,718	2,800,084	2,346,671	950,151	1,337,606	1,027,356	809+633	950+896	267,000	1,016,458	267,000	826, 769	1,062,820	23,593,453	
DOMESTIC & INDUSTRY	(CUB.M.)	267,000	267,000	267,000	267,000	293,700	267,000	267,000	267,000	267,000	267,000	293,700	267,000	267, 000	267,000	267,000	267,000	293, 700	4,912,800	
IRRIGATION REQUIREMENT	(CUB.M.)	681,267	946 80 207	1,927,034	1,359,462	2,169,018	2,533,084	2,079,671	975,930	1,529,438	1,086,223	515+933	683,896	0	149 458	0	559,769	769,120	19,758,131	
U YEAR PT		1951 19	1951 20	1951 22	1951 23	1951 24	1951 25	1951 26	1951 27	1951 28	1951 29	1951 30	16 1561 31	1951 32	EE 1561	1951 34	1951 35	1951 36		

•

i 0 0 0 0.0 60 o þ ю 0 0 0 ò Ó ٥ 0 o 0 0 0 0 0 0 0 o Ó 0 0 0 0 10 1 \mathbf{c} 0 \mathbf{O} a a DEFICIENCY ÷. \sim $\overline{}$ 0 0 \mathbf{c} \sim C - \sim \circ - \sim 0 \sim 0 0 0 0 \sim \sim a (CU9- M- 1 5,086,015 883,972 2,223,919 95,040 673,920 821,554 266,112 932,896 425,098 410,200 518, 524 254,016 1,636,416 3,793,824 209,088 \$540,058 e15.001.1 2,256,479 19,008 05,408 1.67,616 273,024 349,920 848,448 42,968,625 ,656,288 705,024 463, 104 43,424 123,552 503,972 730,080 8,961,707 1.078.777 402,524 Ë <u>UTILIZED</u> CUH.M.) TNUCHA INFLON С ¢ C C ¢ C Ċ ¢ \circ ç \sim 0 C C C 2,133,029 4,395,254 1,213,656 322,290 3, 794, 939 1,013,795 o \circ C 0 12,4727,406 519.553 (CU3. N.) SPILLAGE 7,550,000 11,793,608 12,622,096 8,841,576 9,200,000 14,497,093 9,000,000 13,485,329 6,415,638 6,375,370 9,290,405 13,450,000 17,000,000 3,450,000 17,000,000 13,450,000 17,000,000 12,785,814 9,547,438 9.790,000 12,149,182 9.500,000 I0,911,450 7,453,354 8,407,740 13,450,000 17,000,000 11,800,000 17,000,000 0.700.000 17,000,000 9,128,140 8,211,403 9,765,012 7,800,000 10,256,198 8,000,000 10,804,067 8,800,000 12,174,521 9,232,888 7,075,646 15,059,845 0,200,000 11,222,961 9,250,693 8,221,547 3,500,000 10,302,931 8,276,60 8,815,985 (CUB. M.) STORAGE 9.200,005.6 4,700,000 3,000,000 2+500+000 1,900,000 3,400,000 0,600,000 0,300,000 9,790,000 9,300,000 8.650.000 0,500,000 8,500,000 1,200,000 9,400,000 8,650,000 OPERATION 9,300,000 8,500,000 2,850,000 (CUB. M.) CURVE 821,664 254,016 2,204,064 2,776,032 19,008 425,088 463,104 848,448 +656+288 209,088 11,144,736 2,546,208 4,163,616 55,696,032 673,920 832,896 6,036,016 883,872 730,080 2,829,600 17,280 67.616 273.024 705,024 902,016 613,624 123,552 1,636,416 3,793,824 5,925,312 402,624 95,040 43,424 349.920 RESERVOIR (CUB.M.) INFLOW NET 267,000 2,365,459 267,000 2,208,608 411,260 566,149 267, 300 886, 356 1,147,928 2,316,796 267, 300 42,338,434 293, 700 240,300 L,681,498 2,948,336 1,853,770 2,639,332 847,367 ,038,244 329,960 .,559,647 .,019,200 \$539,580 369 424 267,000 267,000 2,169,290 293,700 2,277,291 1.772.44) ,483, 307 . 655 1203 RESERVOIR REQUIRED (CUB.M. RELEASE INDUS TRY REQUIREMENT s, DOMEST IC 267,000 240,300 267,000 267,000 267,000 267,000 267,000 267,000 293,700 267,000 267,000 267,000 267,000 CUB. M. 267,000 267,000 293,700 267,000 267,000 9,772,200 267,000 293, 700 267,000 267,000 93,700 67,000 293,700 267,000 267,000 67.000 293,700 2,010,291 2,372,832 2,098,459 299,149 1,292,647 32,655,047 771,244 C ------------0 2,655,136 206,095 1,586,770 ,941,608 2,049,796 619.356 1,414,498 935,149 580,367 89,944 1,190,207 725,500 880,928 1,272,580 1,361,501 102,424 761,024 **REQUIREMENT** 2,029,81 I RRIGATION (CUB.M.) 17 30 12 1952 18 19 20 23 25 29 35 36 YEAR PT 10 13 14 29 27 32 7 952 15 952 21 952 33 1952 952 1952 1952 1952 1952 952 952 952 1952 1952 1952 1952 1952 952 1952 1952 952 952 1952 1952 1952 1952 952 1952 0

- 30 -

13. Results of study

A summary table is obtained as the result of this study.

	Total S	pillage	Total U Infl	Jtilized ow	To Defici	tal le n cy	Total Times of Deficiency			
Curve	million M ³	order	million M ³	order	million M ³	order	times	order		
1	810.9	(1)	684.0	(6)	20.0	(6)	33	(6)		
2	726.9	(6)	768.0	(1)	39.2	(1)	65	(1)		
3	788.6	(2)	706.4	(5)	21.9	(5)	34	(5)		
4	762.5	(3)	732.4	(4)	27.7	(4)	41	(4)		
5	738.1	(5)	756.9	(2)	31.5	(2)	50	(2)		
6	738.5	(4)	756.5	(3)	30.0	(3)	46	(3)		

Table 8. Summary Reservoir Operation Based on Six Rule Curves

14. Selection of the best rule curve

A first glance at Table 8, Summary of Reservoir Operation Based on Six Rule Curves, would favor Rule Curve 1, because it gives the least Total Deficiency (20.0 million cubic meters) (order 6). However, a close examination reveals that, with the guidance of Rule Curve 1, the reservoir will be operating almost always with its storage below the corresponding rule curve value. This means that the reservoir would release water to meet only 70% of the irrigation requirement nearly all the time. This continuous shortage of water will certainly affect the crop yield. Rule Curve 1 is therefore left out of consideration.

Rule Curve 2 is apparently not worth for consideration, since it has the largest Total Deficiency among the six rule curves.

Rule Curve 3 which gives the second least Total Deficiency (21.9 million cubic meters) (order 5) is considered inadequate for adoption because the irrigation it provides will also always fall short of requirement.

Rule Curves 4, 5, and 6 are analyzed more in depth. Two more items are introduced for comparison, namely, the number of continuous times of deficiency and the number of continuous times when current storage is below rule curve storage. The table 9 shows the comparison.

From Table 9, it seems that the continuous deficiency occurred in 1954– 1955 for Rule Curves 4, 5 and 6 would have caused same damage. Moreover, in 1964–1965, the numbers of continuous times when current storage is below rule curve storage for these 3 curves are quite close.

Table 9

Rule Curve	Number of continuous times of deficiency*	Number of continuous times when current storage is below rule curve storage**
4	27 parts (9 months)	34 parts (11 1/3months)
5	30 parts (10 months)	30 parts (10 months)
6	29 parts (9 2/3 mo n ths)	31 parts (10 1/3 months)

* occurred in 1954-1955 ** occurred in 1964-1965

The difference between Rule Curves 4, 5 and 6 in the sense of avoiding water deficiency is slight. However, since Rule Curve 4 has the least amount of total deficiency (27.7 million cubic meters, order 4) among the three, it is selected as the best rule curve. This curve is shown in Figure 4.

The adequate figures of total spillage and total utilized inflow given by Rule Curve 4 also support this selection.

15. Updating of the rule curve

Rule curve should be updated preferably every two or three years because additional hydrological data will be available and there is the possibility of a change in the cropping area.

The computer program used in this study has taken this need into consideration. This program can be easily re-run if additional and/or new data are put into the data card set.

16. Application of this study to other reservoirs

The computer program for this study can be revised for use on other reservoirs constructed mainly for irrigation. Only some minor changes in the statements is needed for this purpose.

-32-

Part B. The Computer Program

I. The computer language

This program is written in PL/I language, which is capable of handling large volume of data for scientific problems.

2. The program

The entire work consists of 3 programs, one work program and two utility programs. The first utility program is designed to write data from punched cards onto a tape, which is used for the input of the work program. The output from the work program is on another tape, and the second program is used to print out the contents from this tape. These two utility programs are required for the multi-programming operation of the IBM 360/40 computer.

Only the work program is explained here, and the word program mentioned hereafter means the work program.

3. Nomenclature of symbols used in the program

ZA	-number of years.
RAIN(11)	—an one dimensional array consisting of 11 daily rainfall values.
EVP(11)	-an one-dimensional array consisting of daily evaporation values.
INF(11)	—an one-dimensional array consisting of 11 daily reservoir inflow values.
H(4)	—an one-dimensional array consisting of 4 numbers. Each
	number is either 1 or 0. 1 stands for paddy rice condition and 0 stands for upland crop condition. Thus the 1st, 2nd, 3rd and 4th number of the array represent the paddy rice/upland crop condition of the corresponding 1st, 2nd, 3rd and 4th zone of the irrigated area.
V(3,4)	-a two-dimensional array of 3 rows each containing 4
	numbers. Each number is either 1 or 0 standing for

numbers. Each number is either 1 or 0, standing for paddy rice or upland crop condition. 3 rows represent 3 cropping periods, the first crop, the second crop and the winter crop. 4 numbers in a row represent 4 zones.
-for paddy rice condition, E stands for evapo-transpiration plus percolation loss. For upland crop condition, E stands for evapotranspiration.

SOIL(7,4)

- -a two-dimensional array of 7 rows each containing 4 numbers.
 - The first row SOIL(1,4) consists of the values of evapotranspiration plus percolation for paddy field of the 4 zones.
 - The second row SOIL(2, 4) consists of the values of depth of water standing in paddy field of the 4 zones.
 - The third row SOIL(3,4) consists of the values of readily available moisture in soils of upland crop field of the 4 zones.
 - The fourth row SOIL(4, 4) consists of the values of area in hectares of the 4 zones.
 - The fifth row SOIL(5,4) consists of reserved spaces to receive temporary values which shall be picked up from the sixth or the seventh row of this same array, or shall be assigned zeroes.
 - The sixth row SOIL(6, 4) consists of the values of water requirement for land preparation in first crop period for the 4 zones.

The seventh row SOIL(7,4) consists of the values of water requirement for land preparation in second crop period for the 4 zones.

- a reserved space to receive temporary value from MAX or shall be assigned zero.
- -a reserved space to receive values from YD or YE.
- -the overland overflow from paddy field under paddy rice condition. Under upland crop condition, F stands for overland overflow plus deep percolation loss.
- -the maximum depth of standing water in paddy field.
- -the maximum amount of readily available moisture in soil.

Е

G

D

MAX F

YD YE

- 34 -

EFF —irrigation efficiency.

INTER1 —a reserved space to hold temporarily the quotient of two values.

ALPHA —the fraction of total land area under irrigation.

INTER2 —a reserved space to hold temporarily the product of two values.

- TA(25) —an one-dimensional array of 25 numbers which are fractions of total area of paddy fields under irrigation in the 25 days after the starting of first crop irrigation.
- TB(15) —an one-dimensional array of 15 numbers which are fractions of total area of paddy fields under irrigation in the last 15 days of the first crop irrigation.
- TCD(2,20) —a two-dimensional array of 2 rows each containing 20 numbers. The first and second row represent fractions of total area of paddy field under irrigation in the 20 days of the starting and ending, respectively, of the second crop irrigation.

BETA —the fraction of area of rice seedling bed under irrigation.

PA(67) —an one dimensional array of 67 numbers, which represent fraction of area of rice seedling bed under irrigation of the 67 day nursing period of the first crop.

- PB(40) —an one dimensional array of 40 numbers, which represent fraction of area of rice seedbed under irrigation of the 40-day nursing period of the second crop.
- CTR(12,4) —a two-dimensional array of 12 rows each ontaining 4 numbers.
 - Those in the first row CTR(1, 4) are used as counters for the 4 zones. They help operate another set of counters CTR(4, 4).
 - Those in the second row CTR(2, 4) are used as counters for the 4 zones. They help operate another set of counters CTR(5, 4).
 - Those in third row CTR(3,4) are used as counters for the 4 zones. They help operate another set of counters CTR(6,4).
 - Those in the fourth row CTR(4, 4) are used as counters for the 4 zones. They help pick up a number from the first row of array XABC to be a temporary value of A.

- Those in the fifth row CTR(5, 4) are used as counters for the 4 zons. They help pick up a number from the second row of array XABC to be a temporary value of A.
- Those in the sixth row CTR(6,4) are used as counters for the 4 zones. They help pick up a number from the third row of array XABC to be a temporary value of A.

Those in the seventh row CTR(7, 4) are used as counters for the 4 zones. They help pick up a number from the array TA to be a temporary value of ALPHA.

- Those in the eighth row CTR(8, 4) are used as counters for the 4 zones. They help pick up a number from the array TB to be a temporary value of ALPHA.
- Those in the nineth row CTR(9,4) are used as counters for the 4 zones. They help pick up a number from the first row of array TCD to be a temporary value of ALPHA.
- Those in the tenth row CTR(10, 4) are used as counters for the 4 zones. They help pick up a number from the second row of array TCD to be a temporary value of ALPHA.

Those in the eleventh row CTR(11, 4) are used as counters for the 4 zones. They help pick up a number from array PA to be a temporary value of ALPHA.

Those in the twelfth row CTR(12, 4) are used as counters for the 4 zones. They help pick up a number from array PB to be a temporary value of ALPHA.

-a reserved space to hold temporary intermediate value.
3, 10) -a two-dimensional array of 3 rows each containing 10 numbers.

The first row XABC(1,10) consists of 10 Hargreaves' ratios corresponding to the 10 successive stages of growth of upland crop in the first crop period.

The second row XABC(2, 10) consists of 10 Hargreaves' ratios corresponding to the 10 successive stages of growth of upland crop in the second crop period.

-36-

WW XABC(3, 10) The third row XABC(3, 10) consists of 10 Hargreaves' ratios corresponding to the 10 successive stages of growth of upland crop in the winter crop period.

-the ratio when multiplying the evaporation gives the evapo-transpiration of upland crop.

EIR(2, 4, 11)

QPS(3,4)

Α

- —a three dimensional array containing two sub-arrays.
 The first sub-array EIR(1, 4, 11) has 4 rows representing the 4 zones. Each row consists of 11 numbers representing values of daily effective rainfall.
 - The second sub-array EIR(2, 4, 11) has 4 rows representing the 4 zones. Each row consists of 11 numbers representing the daily irrigation.

—a two-dimensional array of 3 rows each containing 4 numbers.

- Numbers of the first row QPS(1, 4) are the daily irrigation requirements of paddy rice or upland crop for the 4 zones.
- Numbers of the second row QPS(2, 4) are the daily water requirements for land preparation for paddy rice for the 4 zones. For upland crop condition, these numbers will be made equal to zeroes.
- Numbers of the third row QPS(3, 4) are the daily irrigation requirements of rice seedling bed for the 4 zones. For upland crop condition, these numbers will be made equal to zeroes.
- SUPQ —the daily water requirement for supplemental irrigation of outside area.
 - -the sum of the daily irrigation requirements for rice or upland crop for the whole irrigated area.
 - -the sum of the daily irrigation requirements of rice seedling bed for the whole irrigated area. For upland crop condition, Y will equal to zero.
- Z —the sum of the daily land preparation requirements for the whole irrigated area. For upland crop condition, Z will equal to zero.

-the daily total irrigation requirement.

SQ

Х

Y

CAP(19) —an one-dimensional array of 19 numbers representing the numerical values of reservoir capacity on the Capacity-Area curve.

TSPIL	-the total amount of spillage from the reservoir in the
MAADII	study period.
TISPIL	-same as TSPIL.
TDEF	-the total amount of deficiency in the study period.
TTDEF	—same as TDEF.
S	
ARGS	—same as S.
SS	—same as S.
RAR(19)	-an one-dimensional array of 19 numbers representing the
	numerical values of reservoir area on the Capacity-Area curve.
WSA	-the water surface area of the reservoir.
INTER3	-a reserved space to hold temporarily the result of a calculation.
INTER4	-a reserved space to hold temporarily the result of a
	calculation.
WSAA	-same as WSA.
LNR(3,11)	-a two-dimensional array of 3 rows each containing 11
.,	numbers
	The numbers of the first row LNR(1,11) are values of
	daily evaporation loss from reservoir's water sur-
	Numbers of the second row INR (2.11) are values of
	daily net inflow of the reservoir
	Numbers of the third row INR (3.11) are values of
	doily release of the reservoir
DET 00	the difference in stornge of the reservoir at the begin
DELIS	ning and at the end of the day.
MAXS	-the reservoir-full storage of the reservoir.
MINS	-the reservoir empty storage of the reservoir.
LSPIL	-the spillage of the day.
LDEF	-the deficiency of the day.
DOMIND	-the daily domestic and industrial water requirements.
PDI	-the sum of domestic and industrial requirements in a
	part of a month.
PPDI	same as PDI.
PRAIN	-the sum of rainfall in a part of a month.
PEVP	-the sum of evaporation in a part of a month.
YRAIN	-the sum of rainfall in a year.

- 38 -

YYRAIN	same as YRAIN.
PER1	-the sum of effective rainfall in a part of a month for
	zone 1.
PER2	-the sum of effective rainfall in a part of a month for
	zone 2.
PER3	-the sum of effective rainfall in a part of a month for
	zone 3.
PER4	-the sum of effective rainfall in a part of a month for
	zone 4.
YER1	-the sum of effective rainfall in a year for zone 1.
YER2	-the sum of effective rainfall in a year for zone 2.
YER3	-the sum of effective rainfall in a year for zone 3.
YER4	-the sum of effective rainfall in a year for zone 4.
YYER1	—same as YER1.
YYER2	—same as YER2.
YYER3	—same as YER3.
YYER4	—same as YER4.
PSQ ·	-the sum of total irrigation requirement of a part of a
	month.
PPSQ	—same as PSQ.
YSQ	-the sum of total irrigation requirement of a year.
YYSQ	-same as YSQ.
YDI	-the sum of domestic and industrial requirements of a
	year.
YYDI	—same as YDI.
PRELES	-the sum of reservoir release of a month.
PPRELES	same as PRELES.
PINF	the sum of reservoir inflow of a part of a month.
PPINF	same as PINF.
PLOSSEV	-the sum of evaporation loss of a part of a month.
PPLOSSEV	same as PLOSSEV.
YRELES	-the sum of reservoir release in a year.
YYRELES	-same as YRELES.
YINF	-the sum of reservoir inflow in a year.
YYINF	-same as YINF.
YLOSSEV	-the sum of evaporation loss in a year
YYLOSSEV	-same as YLOSSEV.
PNETINF	-the sum of net inflow of a part of a month.
PPNETINF	-same as PNETINF.

- 39 -

ΥN	ETINF	the	sum	of	net	inflow	of	а	vear.
				<u> </u>			~ -		J

YYNETINF —same as YNETINF.

YR —year.

MN —month.

SARY(19, 36)

-a two-dimensional array of 19 rows each containing 36 numbers.

The 19 rows represent 19 years. The 36 numbers in a row represent numeric values of storage at the ends of the 36 parts in a year.

CDF(4, 19, 36)

—a three-dimensional array containing 4 sub-arrays. Each sub-array contains 19 rows representing 19 years, and each row contains 36 numbers.

The numbers of the first sub-array CDF(1, 19, 36) are values of PINF in 36 parts of a year for 19 years.

The numbers of the second sub-array CDF(2, 19,36) are values of PDI in 36 parts of a year for 19 years.

The numbers of the third sub-array CDF(3, 19, 36) are values of PSQ in 36 parts of a year for 19 years.

The numbers of the fourth sub-array CDF(4, 19, 36) are values of PEVP×10 in 36 parts of a year for 19 years.

CCDF(4, 19, 36) —same as CDF(4, 19, 36).

XX(19) —recurrence frequency.

XY(19) — recurrence of reservoir storage.

ARGJ —percentage.

ARGAA —a value of a rule curve.

NS —a counter.

Т

ZZ —a number equal to (ZA-1)

INTER5 —a number equal to I/ZA. I varies from 1 to ZA.

-a reserved space to hold temporary value.

AA(6, 36) —a two-dimensional array of 6 rows each containing 36 numbers. The 6 rows represent 6 rule curves. The 36 numbers in a row represent the 36 values of a rule curve.

AAA(6, 36) —same as AA(6, 36).

W —a number equal to (ZA—J). J varies from 1 to (ZA—1),
P —a number equal to either (N+1) or (N-1). N varies from 1 to 36.

THETA	-a reduction factor on irrigation requirement, the value
	of which depends on whether the current storage is
	equal to or above, or below the corresponding rule
	curve value.
CR	-amount of reservoir release in a part of a month.
CCR	same as CR.
LOSSPEV	-amount of evaporation loss from reservoir surface in a part of a month.
SPIL	-the spillage from reservoir in a part of a month.
SSPIL	same as SPIL.
U	-the utilized inflow of the reservoir in a part of a month.
UU	-same as U.
DEF	-the amount of deficiency which results in a part of a
	month when the water requirement, after multiplied
	by the reduction factor THETA, can not be fully met.
DDEF	-same as DEF.
DT	-in a part of a month, if there is deficiency, DT is set
	at 1; otherwise DT is set at 0.
YCR	-the amout of reservoir release in a year.
YCCR	-same as YCR.
YCF	-the amount of irrigation requirement in a year.
YCCF	—same as YCF.
YCD	-the amount of domestic and industrial requirement in
	a year.
YCCD	—same as YCD.
YCC	-the amount of reservoir inflow in a year.
YCCC	—same as YCC.
YSPIL	-the amount of spillage in year.
YSSPIL	-same as YSPIL.
YU	-the amount of utilized inflow in a year.
YUU	-same as YU.
YDEF	the total deficiency in a year.
YDDEF	-same as YDEF.
YDT	-the total number of parts in which there are deficiency.
YYSUD(3, 6)	-a two-dimensional array of 3 rows each containing 6 numbers.
	Those in the first row YYSUD(1,6) represent the respec-
	tive values of total YSPIL for the 6 rule curves.
	- 41 -

Those in the second row YYSUD(2,6) represent the respecitve values of total YU for the 6 rule curves. Those in the third row YYSUD (3,6) represent the respective values of total YDEF for the 6 rule curves.

YYSSUD(3,6) —same as YYSUD(3,6).

YYDT(6) —an one-dimensional array of 6 numbers which represent the respective values of total YDT for the 6 rule curves.

SWITCH(8, 15) —a two-dimensional array of 8 rows, each containing 15 label constants. For example, reference to SWITCH (5, 13) means reference to the 13th label constant of the 5th row of this array.

DIMENSION —a number.

DECIMAL —the position of the decimal point of a number

TABLE(67)---an one-dimensional array of 67 numbers. This array isused to hold temporarily numbers of other arrays

ND —the integer part of DIMENSION/10.

TABLENO —the table number.

NBK —the number of blanks.

PUPLAND —the amount of upland crop irrigation requirement of zone 4 in a part of a month.

PPUPLAND —same as PUPLAND.

YUPLAND —the amount of upland crop irrigation requirement of zone 4 in a year.

YYUPLAND —same as YUPLAND.

BLK —blank.

I —an iteration number.

J	-ditto
K	-ditto
L	—ditto
Μ	—ditto
N	-ditto

4. Flow Chart

- 42 -

- 44 -

- 45 -

- 46 -

- 47 -

- 49 -

- 50 -

- 51 -

- 54 --

- 55 --

- 56 -

- 57 -

- 58 -

- 61 -

5. Arrangement of data cards

Data cards are arranged into two groups. The first group covers all the constants needed by this program. The second group is the hydrological data.

The first group includes the 1st to the 50th card. The second group starts with the 51th card and ends with the last card of the data deck.

(a) The first group

The first card contains ZA, YD, YE, MAXS, MINS, V(4,3), SOIL(1,4), DOMIND, SUPQ.

The other cards of the first group are 15 card packs. The purpose of this arrangement is to feed 15 arrays into the computer. Each card pack contains one control card and one or more data cards. The control card is always placed in front of data cards.

The control card contains 5 digits only. The first two digits are for the table numbers of the arrays as follows:

Table Number	Name of Array
01	TA(25)
02	TB (15)
03	TCD(1, 20)
04	TCD(2, 20)
05	PA(67)
06	PB(40)
07	SOIL(6,4)
08	SOIL(7,4)
09	XABC(1, 10)
10	XABC(2, 10)
11	XABC(3, 10)
12	SOIL(4,4)
13	CAP(19)
14	RAR(19)
15	AA(6, 36)

The second two digits of a control card stands for the number of elements in the array. The 5th digit is for the position of decimal point of the element of the array.

— 62 —

The data card is designed to contain 10 elements per card. Therefore. the second card of the first group is the control card of TA; the 3rd, 4th, and 5th cards, the data cards of TA; the 6th card, the control card of TB; the 7th and 8th cards, the data cards of TB; and so forth.

b. The second group

This group consists of successive card packs. Each pack is made of three cards. The first is a rainfall card containing records of 11-day rainfall, the second is a evaporation card containing records of 11-day evaporation, and the third is a inflow card containing records of reservoir inflow for 11 days.

The 11-day period constitutes a part of a month. Three parts make a month. A part may cover one or more false days. A false day's data is made to be 999.9.

The packs are arranged in the calendar sequence.

6. The listing of the program

HOULUNG PROCEDURE OPTIONS (MAIN),.	B5+10010
DECLARE GLASS FILE INPUT ENVIRONMENT	B5-10020
(MEDIUM (SYS020, 2400) F(80))	B5-10030
DECLARE CUP FILE PRINT ENVIRONMENT	85-10040
(MEDIUM(SYS021, 2400)F(133)),.	B5-10050
DECLARE ZA FIXED (2),	B5-10060
RAIN (11) FIXED (4,1),	85-10070
EVP, (11) FIXED (4,1),	B5-10080
INF (11) FIXED (5,2),	85-10090
(H(4), V(3,4)) FIXED(1),	B5-10100
E FIXED (4,2),	B5-10110
SOIL (7,4) FIXED (5,2),	85-10120
(G, D) FIXED (5,2),	B5-10130
MAX FIXED (3),	85-10150
F FIXED (5,2),	B5-10160
YD FIXED (3),	B5-10170
YE FIXED (2),	85-10180
LFF FIXED (2,1),	85-10190
INTER1 FIXED(4,1),	85-10191
ALPHA FIXED (4,3),	B5-10210
INTER2 FIXED(5,2),	B5-10211
TA (25) FIXED (4,3),	B5-10220
TB (15) FIXED (4,3),	B5-10230
TCD(2,201FIXED(4,3),	B5-10240
BETA FIXED (4,3),	85-10270
PA (67) FIXED (4,3),	B5-10280
PB (40) FIXED (4,3),	B5-10290
(CTR(12,4),WW) FIXED(2),	85-10310
XABC(3, 10) FIXED(3, 2),	B5-10320
A FIXED (3,2),	85-10330
EIR(2,4,11)FIXED(4,1),	85-10340
QPS(3,4)FIXED(6),	85-10360
SUPQ FIXED (5),	85-10380
(X+Y,Z) FIXED(7),	85-10381
SQ FIXED(8),	85-10390
CAP (19) FIXED (10,2),	85-10400
ISPIL PICTURE "Z,ZZZ,ZZZ,ZZ9",	B5-10401

- 64 -

TTSPIL CHARACTER (13) DEFINED TSPIL,	85-10402
TDEF PICTURE "ZZZ,ZZZ,ZZ9",	B5-10403
ITDEF CHARACTER (11) DEFINED TDEF,	85-10404
S PICTURE '29,999,999',	B5-10410
ARGS FIXED (8),	B5-10411
SS CHARACTER (10) DEFINED S ,	85-10420
RAR (19) FIXED (10,2),	85-10430
WSA FIXED (10,2),	85-10440
INTER3 FIXED(3,2),	85-10441
INTER4 FIXED(10,2),	85-10442
WSAA FIXED(6+2).	B5-10443
LNR(3,11)FIXED(8),	85-10450
DELTS FIXED (8),	85-10480
(MAXS, MINS) FIXED (8),	B5-10490
LSPIL FIXED (8),	85-10491
LDEF FIXED (6),	B5-10492
DOMIND FIXED (5),	85-10500
PDI RICTURE "ZZ 9, 999",	B5-10510
PPDI CHARACTER (7) DEFINED PDI,	85-10520
PRAIN FIXED (4,1),	B5-10530
PEVP FIXED (4,1).	B5-10531
YRAIN PICTURE 'Z,999V.9',	85-10540
YYKAIN CHARACTER (7) DEFINED YRAIN,	85-10550
(PER1, PER2, PER3, PER4) FIXED(4,1),	85-10560
[Y ER 1, Y ER 2, YER 3, Y ER 4] P IÇ TUR E 'Z , 999V. 9',	85-10570
YYERI CHARACTER(7) DEFINED YERI,	B5-10580
YYEK2 CHARACTER(7) DEFINED YER2,	85-10581
YYER3 CHARACTER(7) DEFINED YER3,	85-10582
YYER4 CHARACTER(7) DEFINED YER4,	B5-10583
PSQ PICTURE 'ZZ,ZZZ,ZZ9',	B5-10590
PPSQ CHARACTER (10) DEFINED PSQ,	B5-10600
YSQ PICTURE 12,229,999,9991,	85-10610
YYSU CHARACTER (13) DEFINED YSQ,	85-10620
YD1 PICTURE "29,999,999",	B5-10630
YYDI CHARACTER (10) DEFINED YDI,	B5-10640
PRELES PICTURE '22,999,999',	85-10650
PPRELES CHARACTER (10) DEFINED PRELES,	B5-10660

PINE PICTURE 'ZZ,ZZZ,ZZS',	85-10670
PPINE CHARACTER (10) DEFINED PINE,	B5-10680
PLOSSEV PIGTURE VZZZ,ZZ9+,	85-10690
PPLUSSEV CHARACTER (7) DEFINED PLOSSEV,	B5-10700
YRELES PICTURE 12,299,559,9991,	85-10710
YYRELES CHARACTER (13) DEFINED YRELES,	85-10720
YINE PICTURE '2,222,999,999',	B5-10730
YYINF CHARACTER (13) DEFINED YINF,	85-10740
YLUSSEV PICTURE 'ZZ,959,999',	85-10750
YYLUSSEV CHARACTER (10) DEFINED YLOSSEV,	B5-10760
PNET INF PICTURE ',,9',	85-10770
PPNETINF CHARACTER (11) DEFINED PNETINF,	85-10780
YNEI INF P ICTURE '2,222,999,999',	85-10790
YYNETINF CHARACTER (13) DEFINED YNETINF,	85-10800
YR FIXED (4).	85-10810
MN CHARACTER (3),	B5-10820
SARY (19,36) FIXED (8),	85-10830
CDF (4,19,36) PICTURE 'ZZ,ZZZ,ZZ9',	85-10840
CCDF (4, 19, 36) CHARACTER (10) DEFINED CDF,	85-10850
(XX(19), XY(19)) FIXED (10,2),	85-10900
ARGJ FIXED (8),	85-10910
ARGAA FIXED (10,2),	B5-10911
(NS, 22) FIXED (2),	85-10920
INTERS FIXED(6,5),	85-10921
T FIXED (8),	B5-10930
AA (6,36) PICTURE 'ZZ,999,999',	85-10940
AAA (0, 36) CHARACTER (10) DEFINED AA,	85-10950
W FIXED (2),	85-10960
P FIXED (2),	85-10970
THETA FIXED (2,1),	85-10980
CR PICTURE *ZZ,999,999*,	B5-10990
CCR CHARACTER (10) DEFINED CR,	85-11000
LOSS YEV FIXED (8).	85-11001
SPIL PICTURE 'ZZ+ZZZ+ZZ9',	B5-11010
SSPIL CHARACTER (10) DEFINED SPIL,	85-11020
U PICTURE 422,222,9994,	85-11030
UN CHARACTER (10) DEFINED W.	85-11047
- 66 -	

DEF PICTURE 'Z,ZZZ,ZZ9',	<u>85-11050</u>
UEF CHARACTER (9) DEFINED DEF,	85-11060
UT FIXED (1),	85-11070
YCK PICTURE 'Z, 299, 999, 999',	85-11080
YCCK CHARACTER (13) DEFINED YCR,	85-11090
YCF PICTURE 'Z,Z99,999,999',	85-11100
YCCF GHARACTER (13) DEFINED YCF,	B5-11110
YCD PICTURE'ZZ, 299, 999',	85-11120
YCCD CHARACTER (10) DEFINED YCD,	85-11130
YGG PICTURE "Z,299,999,959",	85-11140
YEGE CHARACTER (13) DEFINED YCC,	85-11150
YSP1L PICTURE 'Z,ZZZ,999,999',	85-11160
YSSPIL CHARACTER (13) DEFINED YSPIL,	B5-11170
YU PIGTURE 'Z, Z 99, 999, 995',	85-11180
YUU CHARACTER (13) DEFINED YU,	B5-11190
OEF PICTURE 'Z,ZZZ,ZZZ,ZZ9',	85-11200
YDDEF CHARACTER (13) DEFINED YDEF,	85-11210
YDT F1XED (2),	85-11220
YYSUD(3,6) PICTURE "ZZZ, Z99, 999, 999",	85-11230
YYSSUD(3,6) CHARACTER (15) DEFINED YYSUD,	85-11240
YYDT (6) FIXED (4),	85-11290
SWITCH(8,15) LABEL INITIAL(LOCTA,LOCTB,LOCTC,LOCTD,	85-11340
LOCPA, LOCPB, LOCNA, LOCNB, LOCXA, LOCXB, LOCXC, LOCAR,	85-11350
LUCAP, LOCRAR, LOCAA,	85-11360
J01, Jul, J03, J04, J04, J04, J07, J08, J08, J08, J11, J01,	85-11361
J13,J13,J13,	B5-11362
801,801,803,804,804,806,807,808,804,810,811,801,	85-11363
J13,J13,J13,	B5-11364
C01,C02,C02,C04,C04,C04,C07,C08,C04,C04,C04,C04,	85-11365
J13,J13,J13,	85-11366
D01, D01, D03, D01, D01, D01, D07, D08, D01, D01, D01, D01,	85-11367
J 13, J 13,	85-11368
E01,E02,E03,E03,E03,E03,E07,EC8,E08,F08,E01,E01,	85-11369
J13,J13,J13,	85-11370
\$01,501,501,501,501,501,507,508,508,510,501,501,	85-11371
J13, J13, J13,	85-11372
M1, M2, M3, M4, M5, M6, M7, M8, M9, MA, M8, MC, J13, J13, J13),	85-11373

DIMENSION FIXED(2),	B5-11374
DECIMAL FIXED (1),	85-11380
TABLE (67) FIXED (8).	B5-11390
ND FIXED (1),	85-11400
ITABLEND, NBK) FIXED(2),	85-11410
PUPLAND PICTURE "ZZZ,ZZ9",	85-11411
PPUPLAND CHARACTER (7) DEFINED PUPLAND,	85-11412
YUPLAND PICTURE "ZZ,ZZZ,ZZ9",	B5-11413
YYUPLAND CHARACTER (10) DEFINED YUPLAND,	85-11414
BLK CHARACTER (1);.	<u>85-11430</u>
GET FILE (GLASS) EDIT (ZA, YD, YE, MAXS, MINS, ((V(I,J) DO J=1 TO 4	<u>185-11450</u>
DO I=1 TO 3), (SOIL(1,M) DO M=1 TO 4), DOMIND,	85-11451
SUPQ, BLK) (F(2), X(1), F(3), X(1), F(2), X(1), F(8), X(2), F(7), X(1),	B5-11460
12 F(1)+X(2)+4 F(5+2),X(1)+F(5),	B5-11470
X(1),F(5),X(5),A(1)),•	85-11480
DO J=1 TO 15,.	85-11490
GET FILE (GLASS) EDIT (TABLENO, DIMENSION, DECIMAL, BLK) (F12),	85-11500
F12)+F11)+X174)+A11)).	85-11510
I ABL E=0,.	85-11511
GET FILE (GLASS) EDIT((TABLE(I) DO I=1 TO DIMENSION))(F(8)),.	B5-11520
ND=DIMENSION/10,.	B5-11530
NBK={10-{D1MENSION-10*ND}}*8,.	85-11540
IF NB<=0 OR NBK=80 THEN GO TO SWITCH(1,J),.	85-11550
CO I=1 TO NB<	85-11560
GEI FILE (GLASS) EDIT(BLK)(A(1)),.	85-11561
END,.	B5-11562
GO TO SWITCH(1,J)	B5-11580
EDLP	85-11581
END, •	85-11590
GO TO START,.	85-11600
LUCTA DO I=1 TO DIMENSION	85-11610
IA(I)=TABLE(I)/10**DECIMAL,.	B5-11611
END GO TO EDLP	85-11612
LUCTB DU I=1 TO DIMENSION,.	B5-11620
IB(I)=TABLE(I)/10**DECIMAL+•	85-11621
END,. GO TO EDLP,.	85-11622
LOCTC DO I=1 TO DIMENSION,.	B5-11630

- 68 --

TCD(1,1)=TABLE(1)/1C**DECIMAL **	85-11631
END,. GO TO EDLP,.	85-11632
LUCTD DU I=1 TO DIMENSION,.	B5-11640
ICD(2,I)=TABLE(I)/10**DECIMAL.	85-11641
END,. GO TO EDLP,.	85-11642
LUCPA DO I=1 TO DIMENSION,.	85-11650
PA(I)=TABLE(I)/10**DECIMAL,.	B5-11651
END,. GO TO EALP,.	85-11652
LUCPB DO I=1 TO DIMENSION	85-11660
PB(I)=TABLE(I)/1C**DECIMAL.	85-11661
END,, GO TO EDLP,.	85-11662
LOCNA DO I=1 TO DIMENSION,.	85-11670
SO IL (6, I)=TABL E(I)/10**DEC IMAL, .	B5-11671
END,. GO TO EDLP,.	B5-11672
LOCNB DO I=1 TO DIMENSION,.	B5-11680
SOIL(7,I)=TABLF(1)/10**DECIMAL,.	85-11681
END,. GO TO EDLP,.	B5-11682
LOCXA DO I=1 TO DIMENSION,.	B5-11690
XABC(1, I J=TABLE(1)/10**DECIMAL,.	B5-11691
END,. GO TO EDLP,.	B5-11692
LOCXB DO I=1 TO DIMENSION,.	85-11700
XABC(2,1)=TABLE(1)/10**DECIMAL	B5-11701
END,. GO TO EDLP	B5-11702
LOCXC DO I=1 TO DIMENSION,.	85-11710
XABC(3,1)=TABLE(1)/10**DECIMAL,.	85-11711
END,. GO TO EDLP,.	85-11712
LOCAR DO I=1 TO DIMENSION,.	85-11720
SO IL (4, I)=TABL E(I) / 10**DEC IMAL , .	85-11721
END,. GO TO EDLP,.	85-11722
LUCAP DU I=1 TO DIMENSION,.	85-11730
CAP(I)=TABLE(I)/10**DECIMAL.	85-11731
END,. GO TO EDLP,.	85-11732
LUCRAR DO I=1 TO DIMENSION,.	B5-11740
RAR(I)=TABLE(I)/10**DECIMAL,.	85-11741
END,. GO TO EDLP,.	B5-11742
LOCAA DO I=1 TO DIMENSION,.	B5-11750
AA(6,1) = TABLE(1)/10**DECIMAL,.	85-11751

- 69 -
| STARI SHMAXS SARY=9999. CDF-0 85-11760 D0 M=L TU 4 SOILL3.M)=0 END 85-11761 SPLE=J TUEH=0 85-11762 SPLE=J TUEH=0 85-11762 YFAK00 1=1 TO ZA 85-11770 PUI FILE (CUP) EDIT ('EFFECTIVE RAINFALL, IRRIGATION', 85-11780 * ' REQUIREMENT AND RESERVOIR OPERATION STUDY FOR HOULUN', 85-11790 * 'G RESERVOIR')(PAGE, X120), A1301, A153), A1(11), . 85-11800 PUT FILE(CUP) EDIT ((15)'-')(SKIP(1), X(20), A) 85-11810 YR=1+1950 85-11820 F(4)) 85-11820 PUT FILE (CUP) EDIT ((11)'-')(SKIP(1), X(1), A, X(1), A, S5-11830 PUT FILE (CUP) EDIT ((11)'-')(SKIP(1), X(1), A, X(1), A, S5-11830 PUT FILE (CUP) EDIT ('MON', 'PT', 'RAIN', 'EFFECTIVE RAIN', 85-11830 'FALL', 'RRIGATION', 'DOTMESTIC', 'REQUIRED', 'RESERVOIR', 85-11850 'FALL', 'RRIGATION', 'DOTMESTIC', 'SPILLAGE', 'DEFICTEN' SC(1P(L), X(1), A, X(1), A, X(1), A, X(1), A, X(2), A, X(2), A, X(2), A, S5-11850 'KEVAPORA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICTEN' SC(1P(L), X(1), A, X(1), A, X(1), A, X(1), A, X(2), A, X(2), A, X(2), A, S5-11850 'KEU LE (CUP) EDIT ('TALL', 'AREA', 'AREA', 'AREA', 'AREA', B5-11850 'KEU L', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICTIEN' SC(1P(L) | END,. GO TO EDLP,. | 85-11752 |
|---|---|------------------|
| D0 M=1 T0 4,. S01L(3,M)=D,. END,. B5-11761 SP[L=J,. TUEF=0,. B5-11762 YFAKUD 1=1 T0 ZA,. B5-11762 PUI FILE (CUP) EDIT ('EFFECTIVE RAINFALL, IRRIGATION', B5-11760 ' kEQUIAEMENT AND RESERVOIR DPERATION STUDY FOR HOULUN', B5-11700 ' KEQUIAEMENT AND RESERVOIR DPERATION STUDY FOR HOULUN', B5-11700 'G RESERVOIR')(PAGE, X(20), A(30), A(53), A(11)), B5-11800 PUT FILE(CUP) EDIT (('95)'-')(SKIP(1), X(20), A), B5-11810 YR=(+1950,. B5-11620 PUT FILE (CUP) EDIT ('YEAR', YR)(SKIP(1), X(1), A, X(1), B5-11821 PUT FILE (CUP) EDIT ('YEAR', YR)(SKIP(1), X(1), A, X(1), B5-11820 PUT FILE (CUP) EDIT ('MON', 'PT', 'RAIN', 'EFFECTIVE RAIN', B5-11830 PUT FILE (CUP) EDIT ('MON', 'PT', 'RAIN', 'EFFECTIVE RAIN', B5-11830 PUT FILE (CUP) EDIT ('NON', 'DT', 'RAIN', 'EFFECTIVE RAIN', B5-11830 'FVAP0AA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') SCIP(LI), X(1), A, X(1), A, X(1), A, X(1), A, X(3), A, X(1), A, X(1), A, X(2), A, X(2), A, B5-11800 'KEUU1AEMENT', 'INDUSTRY', 'RESERVOIR ', 'INFLOW', 'ITON', B5-11900 'KESERVJIR', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'ITON', B5-11900 'KESERVJIR', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'ISAIP(1), X(2), A, X(2), A, X(2), A, X(2), A, X(2), A, X(1), A, X(1), A, X(1), A, X(1), A, X(1), A, X(2), A, X(2), A, X(2), A, B5-11900 'KEUUAEMENT', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'ISAIP(1), X(3), A, X(3), B5-11920 | STARI S=MAX5 SARY=9999 CDF=0 | 85-11760 |
| SPIL=J,. 10E+=0,. B5-11762 YFARDD 1=1 IO ZA,. B5-11770 PUI FILE (CUP) EDIT ('EFFECTIVE RAINFALL, IRRIGATION', B5-11780 * KEQUIR EMENT AND RESERVOIR OPERATION STUDY FOR HOULUN', B5-11800 * KEQUIR EMENT AND RESERVOIR OPERATION STUDY FOR HOULUN', B5-11800 * WIT FILE(CUP) EDIT ((95)'-')(SKIP(I), X(20), A),. B5-11810 * WIT FILE (CUP) EDIT ('95)'-')(SKIP(I), X(20), A),. B5-11820 F(4)),. B5-11820 * PUT FILE (CUP) EDIT ('YEAR', YR)(SKIP(I), X(1), A, X(1), B5-11820 F(4)),. B5-11820 * PUT FILE (CUP) EDIT ('UNON', 'PT', 'RAIN', 'EFFECTIVE RAIN', E5-11840 *F6-11830 PUT FILE (CUP) EDIT ('UNON', 'PT', 'RAIN', 'EFFECTIVE RAIN', E5-11840 * FALL', 'IRRIGATION', 'DOMESTIC', 'REQUIRED', 'RESERVOIR', B5-11850 *EvAP04A', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') B5-11810 X(1), A, X(2), A, X(1), A, X(1), A, X(5), A, A, X(3), A, X(1), A, B5-11800 'SEVAP04A', 'NET', 'STORAGE', 'SPILLAGE', 'AREA', 'AR | DO M=1 TU 4,. SDIL(3,M)=0,. END | 85-11761 |
| YFARD0 1=1 T0 ZA,. B5-11770 PUI FILE (CUP) EDIT ('EFFECTIVE RAINFALL, IRRIGATION', B5-11780 ' KEQUIAEMENI AND RESERVOIR DPERATION STUDY FOR HOULUN', B5-11800 '' KEQUIAEMENI AND RESERVOIR DPERATION STUDY FOR HOULUN', B5-11800 '' B5-11800 PUT FILE(CUP) EDIT (('95)'-')(SKIP(1), X(20), A),. B5-11810 YR=(+1950,. B5-11820 PUT FILE (CUP) EDIT ('YEAR', YR)(SKIP(1), X(1), A, X(1), B5-11820 PUT FILE (CUP) EDIT ('11)'-')(SKIP(1), X(1), A, X(1), B5-11820 PUT FILE (CUP) EDIT ('11)'-')(SKIP(1), X(1), A, X(1), B5-11830 'FALL',' IRR IGATION', 'DOMESTIC', 'REQUIRED', 'RESERVOIR', B5-11830 'SEVAPOXA-', 'NET', 'STORAGE ', 'SPILLAGE', 'DEFICIEN' 'FALL', 'IRR IGATION', 'DOMESTIC', 'REQUIRED', 'RESERVOIR', B5-11830 'SEVAPOXA-', 'NET', 'STORAGE ', 'SPILLAGE', 'DEFICIEN' 'FALL',' IRR IGATION', 'DOMESTIC', 'REQUIRED', 'RESERVOIR', B5-11830 'KEVAPOXA-', 'NET', 'STORAGE ', 'SPILLAGE', 'AREA', 'ARE | SPIL=0,. IUEH=0,. | 85-11762 |
| PUI FILE (CUP) EDIT ('EFFECTIVE RAINFALL, IRRIGATION', B5-11780 ' ALQUIAEMENT AND RESERVOIR OPERATION STUDY FOR HOULUN', B5-11790 'G KESERVOIR')(PAGE, X(20), A(30), A(53), A(11)),. B5-11800 PUT FILE(CUP) EDIT ((95)'-')(SKIP(1), X(20), A),. B5-11810 YR=1+1950,. B5-11821 PUT FILE (CUP) EDIT ('YEAR',YR)(SKIP(1),X(1),A,X(1), B5-11820 F14)) B5-11821 PUT FILE (CUP) EDIT ('YEAR',YR)(SKIP(1),X(1),A,X(1), B5-11820 PUT FILE (CUP) EDIT ('MON','PT','RAIN','EFFECTIVE RAIN*, B5-11840 'FALL',' IRRIGATION', 'DOMESTIC', 'REQUIRED', 'RESERVOIR', B5-11860 'EVAPORA-', 'NET', 'STORAGE', 'SPTILAGE', 'OEFTCTEN') B5-11830 'EVAPORA-', 'NET', 'STORAGE', 'SPTILAGE', 'AREA', 'AREA', 'AREA', B5-11880 'EVAPORA-', 'NET', 'STORAGE', 'SPTILAGE', 'INFLOM', 'TION', B5-11880 PUT FILE (CUP) EDIT ('FALL','AREA', 'AREA', 'AREA', 'AREA', B5-11890 'KEQUIREMENT', 'INDUSTRY', 'RESERVOIR', 'INFLOM', 'TION', B5-11900 'KESERVJIR', '-CY')(SKIP(1),X(1),A,X(1),A,X(2),A,X(2),A,X(2),A,B5-11910 X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(1),A,X(2),A,X(2),A,X(3),A,X(3),B5-11920 A) B5-11920 'REUEASE', 'LOSS', 'INFLOM') ISKIP(1),X(15),A,X(3),A,X(3),A,X(3),B5-11950 'RELEASE', 'LOSS', 'INFLOM') ISKIP(1),X(1),A),. | YFARDO 1=1 TO ZA,. | B5-1177 0 |
| <pre>' AEQUIAEMENT AND RESERVOIR OPERATION STUDY FOR HOULUN', B5-11790 'G RESERVOIR')(PAGE, X(20), A(30), A(53), A(11)),. B5-11810 //UT FILE(CUP) EDIT ((95)'-')(SKIP(1), X(20), A),. B5-11810 //UT FILE(CUP) EDIT ('YEAR',YR)(SKIP(1),X(1),A,X(1), B5-11820 ////////////////////////////////////</pre> | PUT FILE (CUP) EDIT ('EFFECTIVE RAINFALL, IRRIGATION', | 85-11780 |
| <pre>'G KESEKVDIR')(PAGE, X(20), A(30), A(53), A(11)),. B5-11800 PUT FILE(CUP) EDIT ((95)'-')(SKIP(1), X(20), A),. B5-11810 YR=1+1950,. B5-14510 PUT FILE (CUP) EDIT ('YEAR',YR)(SKIP(1),X(1),A,X(1), B5-11820 F(4)),. B5-11821 PUT FILE (CUP) EDIT ((11)'-')(SKIP(1),X(1),A1,. B5-11830 PUT FILE (CUP) EDIT ((11)'-')(SKIP(1),X(1),A1,. B5-11830 'FALL',' IRR IGATION', 'DDME STIC', 'REQUIRED', 'RESERVOIR', B5-11850 'EVAPO(A-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') B5-11860 (S<(IP(1),X(1),A,X(1),A,X(1),A,X(5),A,A,X(3),A,X(1),A, B5-11830 PUT FILE (CUP) EDIT ('FALL','AREA','AREA','AREA','AREA', B5-11830 PUT FILE (CUP) EDIT ('FALL','AREA','AREA','AREA','AREA', B5-11830 'KEUUIREMENT','INDUSTRY','RESERVOIR','INFLOW','TION', B5-11900 'KESERVDIR','-CY')(SKIP(1),X(13),A,X(2),A,X(2),A,X(2),A,B5-11910 X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(1),A,X(3),A,X(3),A,X(3),B5-11920 A) B5-11930 PUT FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','REQUIRE-', B5-11940 'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950 A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A) B5-11930 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11930 'CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-12001 A(2),A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12010 D(M+1 TO 4,. SOIL(2,M)=0,- END,- E5-12020 CTR=J,. B5-12030 'YRAIN=U,_</pre> | REQUIREMENT AND RESERVOIR OPERATION STUDY FOR HOULUN | ,85-11790 |
| PUT FILE(CUP) EDIT ((95)'-')(SKIP(1), X(20), A),. B5-11810 YR=(+1950,. B5-14510 PUT FILE (CUP) EDIT ('YEAR',YR)(SKIP(1),X(1),A,X(1), B5-11820 F(4)),. B5-11821 PUT FILE (CUP) EDIT ('LI1)'-')(SKIP(1),X(1),A),. R5-11830 PUT FILE (CUP) EDIT ('INON', 'PT', 'RAIN', 'EFFECTIVE RAIN', B5-11840 'FALL', 'IRR IGATION', 'DOME STIC', 'REQUIRED', 'RESERVOIK', B5-11850 'EVAPOAA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') B5-11860 (S<(1)(1),X(1),A,X(1),A,X(1),A,X(5),A,X(3),A,X(1),A, B5-11860 | 'G RESERVOIR')(PAGE, X(20), A(30), A(53), A(11)),. | 85-11800 |
| YR=(+1950,. B5-14510 PUT FILE (CUP) EDIT ('YEAR',YR)(SK1P(1),X(1),A,X(1). B5-11820 F(4)),. B5-11821 PUT FILE (CUP) EDIT ((11)'-')(SK1P(1),X(1),A),. R5-11830 PUT FILE (CUP) EDIT ((11)'-')(SK1P(1),X(1),A),. R5-11830 PUT FILE (CUP) EDIT ((11)'-')(SK1P(1),X(1),A),. R5-11840 'FALL','IRRIGATION','DDMESTIC','REQUIRED','RESERVOIK', B5-11850 'EVAPO4A-','NET','STORAGE','SPILLAGE','DEFICIEN') B5-11860 (S<1P(1),X(1),A,X(1),A,X(1),A,X(5),A,X(3),A,X(1),A, | PUT FILE(CUP) EDIT ((95))-()(SKIP(1), X(20), A),. | B5-11810 |
| PUT FILE (CUP) EDIT ('YEAR',YR)(SKIP(1),X(1),A,X(1), B5-11820 F(4)),. B5-11821 PuT FILE (CUP) EDIT ((11)'-')(SKIP(1),X(1),A),. B5-11830 PuT FILE (CUP) EDIT ('MON*,'PT*,'RAIN','EFFECTIVE RAIN', B5-11840 'FALL','IRRIGATION','DOME STIC','REQUIRED','RESERVOIR', B5-11850 'EVAPQA-','NET','STORAGE','SPILLAGE','DEFICTEN') B5-11860 (S<1P(1),X(1),A,X(1),A,X(1),A,X(5),A,A,X(3),A,X(1),A, B5-11860 | YR=[+1950,. | 85-14510 |
| F(4)}, 85-11821 PuT F1LE (CUP) EDIT ((11)'-')(SK1P(1),X(1),A), R5-11830 PUF F1LE (CUP) EDIT ('MON', 'PT', 'RAIN', 'EFFECTIVE RAIN', 85-11840 'FALL', 'IRR IGATION', 'DOME STIC', 'REQUIRED', 'RESERVOIR', 85-11850 'EVAPOXA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') 85-11820 'EVAPOXA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') 85-11860 (S<1P(L), X(1), A, X(1), A, X(1), A, X(5), A, A, X(3), A, X(1), A, | PUT FILE (CUP) EDIT ('YEAR', YR)(SKIP(1), X(1), A, X(1), | 85-11820 |
| PuT FILE (CUP) EDIT ((11)'-')(SKIP(1),X(1),A), A5-11830 PuF FILE (CUP) EDIT ('MON','PT', 'RAIN', 'EFFECTIVE RAIN', B5-11860 'FALL','IRRIGATION','DDME STIC', 'REQUIRED','RESERVOIR', B5-11850 'EVAPORA-', 'NET','STORAGE','SPILLAGE','DEFICIEN') B5-11860 (S<1P(L1,X(1),A,X(1),A,X(1),A,X(5),A,A,X(3),A,X(1),A, B5-11860 | F(4)),. | B5-11821 |
| PUI FILE (CUP) EDIT ('MON', 'PT', 'RAIN', 'EFFECTIVE RAIN', B5-11840 'FALL', 'IRR IGATION', 'DOME STIC', 'REQUIRED', 'RESERVOIR', B5-11850 'EVAPORA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') B5-11860 (SXIP(L), X(11,A, X(11,A, X(11,A, X(5),A,A, X(3),A, X(11,A, B5-11870) X(1), A, X(2), A, X(1), A, X(1), A, X(9), A, X(2), A, A, X(2), A), B5-11880 PUI FILE (CUP) EDIT ('FALL', 'AREA', 'AREA', 'AREA', 'AREA', 'B5-11890 'REQUIREMENT', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'TION', B5-11900 'KESERVOIR', '-CY') (SKIP(1), X(8), A, X(2), A, X(2), A, X(2), A, 85-11910 X(2), A, X(1), A, X(1), A, X(1), A, X(1), A, X(4), A, X(5), A, X(2), A, 85-11920 A),. B5-11930 PUI FILE (CUP) EDIT ('(1)', '(2)', '(3)', '(4)', 'REQUIRE-', B5-11940 'RELEASE', 'LOSS', 'INFLOW') (SKIP(1), X(15), A, X(3), A, X(3), B5-11950 A,X(3), A, X(13), A, X(13), A, X(13), A, X(5), A),. B5-11940 'RELEASE', 'LOSS', 'INFLOW') (SKIP(1), X(15), A, X(3), A, X(3), B5-11950 A,X(3), A, X(13), A, X(13), A, X(13), A, X(5), A),. B5-11940 'RELEASE', 'LOSS', 'INFLOW') (SKIP(1), X(149, A), B5-11970 PUI FILE (CUP) EDIT ('MENT') (SKIP(1), X(149, A), B5-11970 PUI FILE (CUP) EDIT ('MENT') (SKIP(1), X(13), A, X(2), A, S5-11970 < | PUT FILE (CUP) EDIT ((11) +)(SKIP(1),X(1),A),. | R5-11830 |
| <pre>'FALL','IRR IGATION','DOME STIC','REQUIRED','RESERVOIR', B5-11850
'EVAPORA-','NET','STORAGE','SPILLAGE','DEFICIEN') B5-11860
(S<(IP(L),X(1),A,X(1),A,X(1),A,X(5),A,A,X(3),A,X(1),A, B5-11870
X(1),A,X(2),A,X(1),A,X(1),A,X(9),A,X(4),A,X(2),A), B5-11880
PUI FILE (CUP) EDIT ('FALL','AREA','AREA','AREA','AREA', B5-11890
'REUU IREMENT','INDUSTRY','RESERVOIR','INFLOW','TION', B5-11900
'RESERVDIR','-CY')(SKIP(1),X(8),A,X(2),A,X(2),A,X(2),A, B5-11910
X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(1),A,X(2),A,X(2),A,X(2),A, B5-11920
A),. B5-11930
PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','REQUIRE-', B5-11940
'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960
'PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11960
'PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11970
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(13),A,X(2),A, B5-12000
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12000
A,X(2),A,X(13),A,X(4),A,X(4),A,X(4),A,X(4),A,X(3),A,X(2),A, B5-12000
A,X(2),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(3),A,X(2),A, B5-12000
CTR=J,. B5-12010
YHAIN=U,. B5-12010
YHAIN=U,. YER2=0,. YER3=0,. YER4=0,. R5-12080</pre> | PUT FILE (CUP) EDIT (*MON*,*PT*,*RAIN*,*EFFECTIVE RAIN*, | 85-11840 |
| <pre>'EvAPQ4A-', 'NET', 'STORAGE ', 'SPILLAGE ', 'DEFICIEN') B5-11860
(S<1P(L),X(1),A,X(1),A,X(1),A,X(2),A,X(3),A,X(1),A, B5-11870
X(1),A,X(2),A,X(1),A,X(1),A,X(9),A,X(4),A,X(2),A), B5-11880
PUI FILE (CUP) EDIT ('FALL','AREA','AREA','AREA', 'AREA', B5-11890
'REWUIREMENT','INDUSTRY', 'RESERVOIR', 'INFLOW', 'TION', B5-11900
'RESERVDIR','-CY')(SKIP(1),X(8),A,X(2),A,X(2),A,X(2),A, B5-11910
X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(4),A,X(5),A,X(2),A, B5-11920
A),. B5-11930
PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','REQUIRE-', B5-11940
'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A), B5-11960
'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A), B5-11960
'PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A), B5-11970
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A), B5-11980
'CUB, M.','CUB, M.','CUB, M.','CUB, M.','CUB, M.', M.M.', B5-11980
'CUB, M.','CUB, M.','CUB, M.','CUB, M.')(SKIP(1),X(8), B5-12000
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12000
A,X(2),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A], B5-12002
X(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A], B5-12002
CTR=J,. B5-12030
YRAIN=U,. B5-12030
YRAIN=U,. R5-12080</pre> | 'FALL', ' IRR IGATION', 'DOMESTIC', 'REQUIRED', 'RESERVOIR', | 85-11850 |
| <pre>(S<1P(1),X(1),A,X(1),A,X(1),A,X(3),A,X(3),A,X(1),A,
B5-11870
X(1),A,X(2),A,X(1),A,X(1),A,X(9),A,X(4),A,X(2),A),
B5-11880
PUT FILE (CUP) EDIT ('FALL','AREA','AREA','AREA', 'AREA', B5-11890
'REQUIREMENT','INDUSTRY','RESERVOIR','INFLOW','TION', B5-11900
'RESERVDIR','-CY')(SKIP(1),X(8),A,X(2),A,X(2),A,X(2),A, B5-11910
X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(4),A,X(5),A,X(2),B5-11920
A),.
B5-11930
PUT FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','RE QUIRE-', B5-11940
'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3),B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),.
B5-11960
PUT FILE (CUP) EDIT ('MENT')(SKIP(1),X(149),A),.
B5-11970
PUT FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),.
B5-11970
PUT FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),.
B5-11970
PUT FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),.
B5-11980
'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.',
B5-12000
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A,
B5-12000
A,X(2),A,X(2),A,X(2),A,X(2),A,X(4),A,X(4),A,X(2),A,
B5-12000
A,X(2),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A),.
B5-12002
CTR=J,.
B5-12030
YRAIN=U,.
B5-12030
YRAIN=U,.
B5-12080</pre> | 'EVAPORA-', 'NET', 'STORAGE', 'SPILLAGE', 'DEFICIEN') | 85-11860 |
| X(1), A, X(2), A, X(1), A, X(1), A, X(9), A, X(4), A, X(2), A),. B5-11880 PUI FILE (CUP) EDIT ('FALL', 'AREA', 'AREA', 'AREA', 'AREA', 'B5-11890 'REWUIREMENT', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'TION', B5-11900 'KESERVOIR', '-CY')(SKIP(1), X(8), A, X(2), A, X(2), A, X(2), A, B5-11910 X(2), A, X(1), A, X(1), A, X(1), A, X(2), A, X(2), A, X(2), A, B5-11920 A),. B5-11920 A),. B5-11920 A),. B5-11930 PUI FILE (CUP) EDIT ('(1)', '(2)', '(3)', '(4)', 'REQUIRE-', B5-11940 'RELEASE', LOSS', 'INFLOW')(SKIP(1), X(15), A, X(3), A, X(3), B5-11950 A, X(3), A, X(13), A, X(1), A, X(13), A, X(5), A),. B5-11960 PUI FILE (CUP) EDIT ('MENT')(SKIP(1), X(149), A),. B5-11960 'CUB. M.', 'CUB. M.', 'CUB. M.', 'M.M.', 'M.M.', 'M.M.', 'M.M.', 'M.S.', S5-11960 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'M.M.', 'M.M.', 'M.S.', S5-11960 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'M.M.', 'M.M.', 'M.S.', S5-12000 A, X(2), A, X(2), A, X(2), A, X(2), A, X(3), A, X(3), A, X(2), A, X(3), A, X(3), A, X(4), A, X(2), A, X(2), A, X(3), A, X(4), A, X(2), A, X(2), A, S5-12010 DU H = 1 TO 4,. SOIL(2,M)=0,. END,. B5-12030 YRAIN=0,. B5-12030 YRAIN=0,. | (SKIPIL),X(1),A,X(1),A,X(1),A,X(5),A,A,X(3),A,X(1),A, | B5-11870 |
| PUI FILE (CUP) EDIT ('FALL','AREA','AREA','AREA', 'AREA', 'B5-11890 'KEWU IREMENT','INDUSTRY', 'RESERVOIR','INFLOW','TION', B5-11900 'KESERVJIR','-CY')(SKIP(1),X(8),A,X(2),A,X(2),A,X(2),A, (85-11910 X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(2),A,X(2),A,X(2),A, (85-11920 A),. B5-11930 PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)',A,X(5),A,X(24), B5-11920 A),. B5-11930 PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)', 'RE QUIRE-', B5-11940 'RELEASE',*LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950 A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11970 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','M.M.','M.M.', 'M.M.', 'B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11990 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11990 'CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-12001 A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, YA(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A, YA(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A, YUT FILE (CUP) EDIT ((130)'-')(SKIP(1),X(1),A),. <td>X(1), A, X(2), A, X(1), A, X(1), A, X(9), A, X(4), A, X(2), A),.</td> <td>85-11880</td> | X(1), A, X(2), A, X(1), A, X(1), A, X(9), A, X(4), A, X(2), A),. | 85-11880 |
| <pre>'REQUIREMENT', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'TION', B5-11900
'RESERVOIR', '-CY')(SKIP(1),X(8),A,X(2),A,X(2),A,X(2),A, 85-11910
X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(4),A,X(5),A,X(2), 85-11920
A),. B5-11930
PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)', 'REQUIRE-', B5-11940
'RELEASE', 'LOSS', 'INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11960
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11970
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11980
'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'M.M.', 'M.M.', B5-11980
'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'B5-11980
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12000
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12000
A,X(2),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12000
A,X(2),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12000
CTR=J,. B5-12010
YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. B5-12080</pre> | PUI FILE (CUP) EDIT ("FALL","AREA","AREA","AREA", "AREA", | 85-11890 |
| <pre>'KESERVDIR','-CY')(SKIP(1),X(8),A,X(2),A,X(2),A,X(2),A, B5-11910
X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(4),A,X(5),A,X(2),B5-11920
A),. B5-11930
PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','RE QUIRE-', B5-11940
'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11960
PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11980
'CUB. M.','CUB. M.','CUB. M.','M.M.','M.M.','M.M.', B5-11980
'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11990
'CUB. M.','CUB. M.','CUB. M.','CUB. M.')(SKIP(1),X(8), B5-12000
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12001
X(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A),. B5-12002
DUI FILE (CUP) EDIT ((130)'-')(SKIP(1),X(1),A),. B5-12010
DU M=1 TO 4,. SOIL(2,M)=0,. END,. B5-12030
CTR=J,. B5-12030
YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. B5-12080</pre> | 'REQUIREMENT', 'INDUSTRY', 'RESERVOIR', 'INFLOW', 'TION', | 85-11900 |
| X(2),A,X(1),A,X(1),A,X(1),A,X(1),A,X(4),A,X(5),A,X(24), B5-11920 A),. B5-11930 PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','RE QUIRE-', B5-11940 'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950 A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950 A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11970 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','M.M.','M.M.', B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. M.')(SKIP(1),X(8), B5-12000 A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, B5-12001 X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12001 X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12002 PUT FILE (CUP) EDIT ((130)'-')(SKIP(1),X(1),A),. B5-12020 CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER3=0,. YER4=0,. | * KESERVD IR * , * - CY *) (SKIP(1), X(8), A, X(2), A, X(2), A, X(2), A, | 85-11910 |
| A),.
PUJ FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','RE QUIRE-', B5-11940
'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950
A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),.
B5-11960
PUJ FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),.
B5-11970
PUI FILE (CUP) EDIT ('M.M.','M.M.','M.N.','M.M.','M.M.', B5-11980
'CUB. M.','CUB. M.','CUB. M.','CUB. N.','CUB. M.', B5-11990
'CUB. M.','CUB. M.','CUB. M.','CUB. N.','CUB. M.', B5-11990
'CUB. M.','CUB. M.','CUB. M.','CUB. N.','CUB. M.', B5-11990
A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12000
A,X(2),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12001
X(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A),.
B5-12002
PUT FILE (CUP) EDIT ((130)'-')(SKIP(1),X(1),A),.
B5-12010
D0 M=1 TD 4,. SOIL(2,M)=0,. END,.
B5-12030
YRAIN=0,.
YER2=0,. YER3=0,. YER4=0,.
B5-12080 | x(2),A,x(1),A,X(1),A,X(1),A,X(1),A,X(4),A,X(5),A,X(24), | 85-11920 |
| PUI FILE (CUP) EDIT ('(1)','(2)','(3)','(4)','RE QUIRE-', B5-11940 'RELEASE','LOSS','INFLOW')(SKIP(1),X(15),A,X(3),A,X(3), B5-11950 A,X(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. B5-11960 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11970 PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11980 'CUB. M.','CUB. M.','M.M.','M.M.','M.M.','M.M.', B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. N.','CUB. M.', 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','B5-11990 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11990 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-12000 A,X(2),A,X(2),A,X(2),A,X(3),A,X(3),A,X(2),A, B5-12001 X(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12002 PUT FILE (CUP) EDIT ((130)'-')(SKIP(1),X(1),A),. B5-12010 DU M=1 TD 4,. SOIL(2,M)=0,. END,. B5-12030 YRAIN=0,. YER 2=0,. YER 3=0,. YER 4=0,. | A},. | 85-11930 |
| 'RELEASE', 'LOSS', 'INFLOW') (SKIP(1), X(15), A, X(3), Å, X(3), B5-11950 A, X(3), A, X(13), A, X(1), A, X(13), A, X(5), A),. B5-11960 PUI FILE (CUP) EDIT ('MENT') (SKIP(1), X(49), A),. B5-11970 PUI FILE (CUP) EDIT ('M.M.', 'M.M.', 'M.M.', 'M.M.', 'M.M.', 'B5-11980 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'B5-11990 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'B5-11990 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', B5-12000 A, X(2), A, X(2), A, X(2), A, X(2), A, X(3), A, X(3), A, X(2), A, B5-12001 X(3), A, X(2), A, X(2), A, X(2), A, X(3), A, X(3), A, X(2), A, B5-12002 X(3), A, X(3), A, X(4), A, X(4), A, X(4), A, X(4), A, X(4), A, X(2), A, B5-12010 DUT FILE (CUP) EDIT ((130)'-')(SKIP(1), X(1), A),. B5-12010 DU M=1 TD 4,. SDIL(2, M)=0,. END,. B5-12030 CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER 2=0,. YER 3=0,. YER4=0,. B5-12080 | PUT FILE (CUP) EDIT ('(1)','(2)','(3)','(4)', 'REQUIRE-', | B5-11940 |
| A, $\chi(3)$, A, $\chi(13)$, A, $\chi(13)$, A, $\chi(5)$, A),.B5-11960PUI FILE (CUP) EDIT ('MENT')(SKIP(1), $\chi(49)$, A),.B5-11970PUI FILE (CUP) EDIT ('M.M.', 'M.M.', 'M.M.', 'M.M.', 'M.M.', B5-11980'CUB. M.', 'CUB. M.', 'CUB. M.', 'M.M.', 'M.M.', 'M.M.', B5-11990'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', B5-11990'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', B5-12000A, $\chi(2)$, A, $\chi(2)$, A, $\chi(2)$, A, $\chi(2)$, A, $\chi(3)$, A, $\chi(3)$, A, $\chi(2)$, A, B5-12001A, $\chi(2)$, A, $\chi(2)$, A, $\chi(2)$, A, $\chi(2)$, A, $\chi(3)$, A, $\chi(2)$, A, B5-12002A, $\chi(3)$, A, $\chi(4)$, A, $\chi(2)$, A, B5-12010B5-12020PUT FILE (CUP) EDIT ((130)'-')(SKIP(1), $\chi(1)$, A),.B5-12010DU M=1 TD 4,. SOIL(2, M)=0,. END,.B5-12030CTR=J,.B5-12030YRAIN=0,.B5-12030YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,.B5-12080 | 'RELEASE', "LOSS', 'INFLOW') (SKIP(1), X(15), A, X(3), A, X(3), | B5-11950 |
| PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. B5-11970 PUI FILE (CUP) EDIT ('M.M.','M.M.','M.M.','M.M.','M.M.', B5-11980 'CUB. M.','CUB. M.','CUB. M.','CUB. N.','CUB. M.', B5-11990 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-11990 'CUB. M.','CUB. M.','CUB. M.','CUB. M.','CUB. M.', B5-12000 A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, B5-12001 X(3),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, B5-12002 PUT FILE (CUP) EDIT ((130)*-*)(SKIP(1),X(1),A),. B5-12020 CTR=J,. YRAIN=0,. YER 2=0,. YER 3=0,. | A,x(3),A,X(13),A,X(1),A,X(13),A,X(5),A),. | 85-11960 |
| PUT FILE (CUP) EDIT ('M.M. ', 'M.M.', 'M.M.', 'M.M.', 'M.M.', 'M.M.', 'B5-11980 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. N.', 'CUB. M.', 'B5-11990 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'B5-11990 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.', 'B5-11990 A, X (2), A, X (2), A, X (2), A, X (2), A, X (3), A, X (3), A, X (2), A, B5-12001 X (3), A, X (3), A, X (4), A, X (4), A, X (4), A, X (4), A, X (2), A, B5-12002 PUT FILE (CUP) EDIT ((130)'-')(SKIP(1), X(1), A), B5-12010 D0 M=1 TD 4,. SOIL(2, M)=0,. END,. CTR= J,. R5-12030 YRAIN=0,. YER 2=0,. YER 3=0,. YER 4=0,. | PUI FILE (CUP) EDIT ('MENT')(SKIP(1),X(49),A),. | B5-11970 |
| 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. N.', 'CUB. M.', B5-11990 'CUB. M.', 'CUB. M.', 'CUB. M.', 'CUB. M.') (SKIP(1),X(8), B5-12000 A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, B5-12001 X(3),A,X(3),A,X(4),A,X(4),A,X(3),A,X(3),A,X(2),A, B5-12002 PUT FILE (CUP) EDIT ((130)'-')(SKIP(1),X(1),A),. B5-12010 DU M=1 TD 4,. SOIL(2,M)=0,. END,. B5-12020 CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. B5-12080 | PUT FILE (CUP) EDIT ("M.M. ", "M.M. ", "M. M. ", "M.M. ", "M.M. ", | 85-11980 |
| 'CuB. M.', 'CuB. M.', 'CuB. M.', 'CuB. M.') {SKIP(1),X{8}, B5-12000 A,X(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, B5-12001 X(3),A,X(3),A,X(4),A,X(4),A,X(4),A,X(4),A,X(2),A, B5-12002 PUT FILE (CUP) EDIT ({130} *-*) {SKIP(1],X(1),A}, B5-12010 D0 M=1 TD 4,. SOIL(2,M)=0,. END,. CTR=J,. B5-12030 YRAIN=0,. YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. | "CUB. M. ", "CUB. M. ", "CUB. M. ", "CUB. N. ", "CUB. M. ", | 85-11990 |
| A,x(2),A,X(2),A,X(2),A,X(2),A,X(3),A,X(2),A, B5-12001 x(3),A,x(3),A,X(4),A,X(4),A,X(4),A,X(4),A), B5-12002 PUT FILE (CUP) EDIT ((130)*-*)(SKIP(1),X(1),A), B5-12010 D0 M=1 TD 4,. SDIL(2,M)=0,. END,. E5-12020 CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER 3=0,. YER 4=0,. | *CUB. M. *, *CUB. M. *, *CUB. M. *, *CUB. M. *)(SKIP(1),X(8), | B5-12000 |
| x(3), A, X(3), A, X(4), A, X(4), A, X(4), A, X(4), A), . B5-12002 PUT FILE (CUP) EDIT ((130)*-*)(SKIP(1), X(1), A), . B5-12010 D0 M=1 TD 4, . SOIL(2, M)=0, . END, . CTR=J, . B5-12030 YRAIN=0, . B5-12070 YEK1=0, . YER 3=0, . YER4=0, . B5-12080 | A, x (2), A, x(2), A, X(2), A, x(3), A, x(3), A, x(2), A, | B5-12001 |
| PUT FILE (CUP) EDIT ((130)*-*)(SKIP(1),X(1),A),. B5-12010 D0 M=1 TD 4,. SDIL(2,M)=0,. END,. B5-12020 CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER 3=0,. YER4=0,. R5-12080 | x () , A, X (3) , A, X (4) , A , X (4) , A , X (4) , A , X (4) , A) , . | 85-12002 |
| DU M=1 TD 4,. SDIL(2, M)=0,. END,. B5-12020 CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. B5-12080 | PUT FILE (CUP) EDIT ((130))(SKIP(1),X(1),A),. | 85-12010 |
| CTR=J,. B5-12030 YRAIN=0,. B5-12070 YEK1=0,. YER 3=0,. YER 4=0,. S5-12080 S5-12080 | 00 M=1 TD 4,. SOIL(2,M)=0,. END,. | B5-12020 |
| YRAIN=0,. B5-12070
YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. B5-12080 | CTR=3,. | 85-12030 |
| YEK1=0,. YER 2=0,. YER 3=0,. YER 4=0,. R5-12080 | YRAIN=0,. | B5-12070 |
| | YEK1=0 YER 2=0 YER 3=0 YER4=0 | R5-12080 |

- 70 -

YUPLAND= 0.	85-12031
YSQ=0,.	85-12090
YD1=u,.	85-12100
YRELES=J, .	B5-12110
YINF=U.	85-12120
YLOSSEV=0,.	85-12130
YNETINF=0,.	85-12140
YSPIL=0, VDEF=0,.	<u>85-12141</u>
1F I=1 THEN 18=7,.	85-12150
ELSE I8=1,.	85-12160
MON DO J=IB TO 12,.	B5-12170
IF I=1 AND J=7 THEN DD,.	85-12171
CTR(8,1)=7, CTR(8,2)=7, CTR(8,3)=7, CTR(8,4)=7,	85-12172
END,.	85-12173
PAR DJ K=1 TO 3,. PNETINF=0,.	85-12180
PDI=0, PRAIN=0, PINF=0, PSQ=0, PLOSSEV=0,	B5-12190
PER1=0,. PER2=0,. PER3=0,. PER4=0,.	B5-12191
PEVP=0,.	B5-12192
SPIL=0,. DEF=0,.	B5-12193
PUPLAND= 0, •	B5-12194
GET FILE (GLASS) EDIT (RAIN, BLK)	85-12200
<pre>[11 (F{4,1),X(1)), X(24), A(1)),.</pre>	B5-12210
GET FILE (GLASS) EDIT (EVP, BLK)	B5-12220
(11 (F(4,1),X(1)), X(24), A(1)),.	B5-12230
GET FILE (GLASS) EDIT (INF, BLK)	85-12240
(11 F[5,2],X(24),A(1)),.	85-12250
DO L=1 TO 11,.	B5-12270
IF RAIN(L)=999.9 THEN GO TO DAY.	85-12280
GD TO SWITCH(2,J),.	B5-12310
JO1 GO TO ONE,.	85-12320
JO3 IF K=1 AND L LT 7 THEN GO TO ONE,.	B5-12330
ELSE GO TO TWO,.	85-12340
J04 GO TO TWO	85-12350
JO7 IF K=1 AND L LE 7 THEN GO TO TWD	85-12360
ELSE GO TO THREE,.	85-12370
	B5-12380
JOB GO TO THREE.	

.

ELSE GO TO ONE,.	B5-12400
ONF DO M=1 TO 4,. H(M)=V(1,M),. END,.	85-12410
GO TO ZONE,.	B5-12420
TWO DO M=1 TO 4,. H(M)=V(2,M),. END,.	85-12430
GO TO ZONE,.	B5-12440
THREE DJ M=1 TO 4,. H(M)=V(3,M),. END,.	B5-12450
20NE DO M=1 T.O 4,.	85-12471
IF H(M)=1 THEN DD,.	85-12480
E=SOIL(L,M),.	B5-12490
D= SO IL (2 → M) • •	85-12500
M AX= ¥D, .	85-12510
G=0,.	B5-12520
EFF≈1.0,.	85-12530
GD TO SWITCH(3,J),.	85-12570
B01 GO TO TEN,.	B5-12580
BO3 IF K=1 AND L LT 7 THEN GO TO TEN	85-12590
ELSE GO TO FIVE,.	B5-12600
B04 GO TO NINE.	85-12610
BOG IF K= 3 AND L GT 4 THEN GO TO SIX	85-12620
ELSE GO TO NINE,.	85-12630
BO7 IF K=1 AND L LE 8 THEN GO TO SIX	B5-12640
ELSE IF K=3 AND L GE 2 THEN GO TO SEVEN.	. 85-12650
ELSE GO TO TEN,.	85-12660
BO8 IF K=1 THEN GO TO SEVEN	B5-1267Ò
ELSE GO TO NINE,.	B5-12680
B10 IF K=1 THEN GO.TD NINE.	B5-12690
ELSE IF K=2 AND L LE 9 THEN GO TO NINE,	B5-12700
ELSE GO TO EIGHT.	B5-12710
B11 IF K=1 AND L LE 7 THEN GO TO EIGHT,.	85-12720
ELSE GO TO TEN,.	85-12730
FIVE CTR(7,M)=CTR(7,M)+1,.	85-12740
ALPHA=TA(CTR(7,M)),.	85-12750
60 TO CL,.	85-12760
SIX CTR(8,M)=CTR(8,N)+1,.	B5-12770
ALPHA=TB(CTR(8,M)),.	85-12780
60 TO CL	B5-12790
SEVEN CTR(9,M)=CTR(9,M)+1,.	<u>85-12800</u>

ALP HA=TCD(1,CTR(9,M)),.	85-12810
GO TO CL	B5-12820
EIGHT CTR(10,M)=CTR(10,M)+1,.	B5-12830
ALPHA=TCD(2+CTR(10,M)),.	85-12840
GD TO CL.	85-12850
NINE ALP HA=1.000,.	B5-12860
GJ TO CL	85-12870
TEN AL PHA= 0,.	85-12880
CL GO TO SWITCH(4,J),.	85-12930
COl IF K=3 AND L GE 6 THEN GO TO ELEVN	B5-12940
ELSE GO TO THIRTN++	B5-12950
CO2 GD TO ELEVN,.	85-12960
CO4., GO TO THIRIN,.	B5-12970
CO7 IF K=1 AND L LE 2 THEN GO TO THIRTN,.	85-12980
ELSE GO TO TWELVE	85-12990
COB IF K=1 THEN GO TO TWELVE,.	85-13000
ELSE GO TO THIRTN,.	85-13010
ELEVN CTR(11,M)=CTR(11,M)+1,.	85-13020
BETA=PA(CTR(11,M)),.	85-13030
GO TO DL,.	85-13040
TWELVE CTR(12,M)=CTR(12,M)+1,.	B5-13050
BETA=PB(CTR(12,M)),.	85-13060
GO TO DL,.	85-13070
THIRTN BETA=0,.	85-13080
DL GO TO SWITCH(5,J),.	85-13130
DO1 DO N=1 TO 4,. SD1L(5,N)=0,. END,.	85-13140
GO TO CAL	85-13150
DO3 IF K=1 AND L LT 6 THEN	85-13160
DO N=1 TO 4,. SOIL(5,N)=0,. END,.	B5-13161
FLSE IF K=3 AND L GT 10 THEN	B5-13170
DO N=1 TO 4,. SOIL(5,N)=0,. END,.	85-13171
ELSE DO N=1 TO 4,. SOIL(5,N)=SOIL(6,N),. END,. GO TO CAL,.	85-13180
DO7 IF K=3 THEN DO N=1 TO 4,. SOIL(5,N)=SOIL(7,N),. END,.	B5-13190
ELSE DO N=1 TO 4,. \$OIL(5,N)=0,. END,. GO TO CAL,.	85-13200
DO8 IF K=1 AND L LE 9 THEN	85-13210
DO N=1 TO 4,. SOIL(5,N)=SOIL(7,N), END,.	85-13211
ELSE DU N=1 TO 4,. SUIL (5,N = 0,. END,. GO TO CAL,.	85-13220

ELSE DD /# H(M) NE 1 #/ B5-1325 GO TO SWITCH(6,J),. 85-1330 E01 GO TO NINETN,. 85-1331 E02 IF K=1 THEN GO TO NINETN,. 85-1332 E03 GO TO SEVNTN,. 85-1333 E03 GO TO SEVNTN,. 85-1333 E03 GO TO SEVNTN,. 85-1335 E03 GO TO SEVNTN,. 85-1337 E03 GO TO SEVNTN,. 85-1336 E03 GO TO SEVNTN,. 85-1336 E03 GO TO EIGHTN,. 85-1337 SEVNTN CTR(1,M)=1. NH=CTR(1,M)/12,. 85-1338 GO TO POP. 85-1339 1F CTR(4,M) GT 10 THEN CTR(1,M)/12,. 85-1340 A= XABC(1,CTR(4,M)1,. 85-1341 60 TO POP 85-1342 EIGHIN CTR(5,M) GT 10 THEN CTR(2,M)/11,. 85-1343 65-1344 IF CTR(5,M) GT 10 THEN CTR(1,M)/10,. 85-1345 85-1345 A=XABC(2,CTR(5,M)),. 85-1346 85-1346 CTR(1,M)=CTR(3,M)+1 WH=CTR(1,M)/10,. 85-1346 CTR(1,M)=CTR(3,M)+1	END,.	B5-13240
60 TD SWITCH(6,J),. 85-1330 E01 CO TO NINETN,. 85-1331 E02 IF K=1 THEN GO TO NINETN,. 85-1332 E03 GO TO SEVNTN,. 85-1333 E03 GO TO SEVNTN,. 85-1333 E03 GO TO SEVNTN,. 85-1334 E07 IF K=1 THEN GO TO SEVNTN,. 85-1335 E1SE GO TO EIGHTN,. 85-1336 E08 GO TO EIGHTN,. 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1 W=CTR(1,M)/12 SEVNTN CTR(1,M)=CTR(1,M)+1 W=CTR(1,M)/12 GO TO POP 85-1341 GO TO POP 85-1341 GO TO POP 85-1342 EIGHIN CTR(2,M)=CTR(2,M)+1 W=CTR(4,M)=10 GO TO POP 85-1344 JF CTR(5,M) GT 10 THEN CTR(5,M)=10 85-1345 CTR(3,M)=CTR(3,M)+1 W=CTR(3,M)/10 85-1346 SO TO POP 85-1345 85-1345 MAXEYE 85-1346 85-1346 SO TO POP 85-1346 85-1346 SO TO POP 85-1346 85-1345 MATEYE 85-1346 85-1346	ELSE DO /* H(M) NE 1 */	85-13250
E01 GO TO NINETN,. B5-1331 E02 IF K=1 THEN GO TO NINETN,. B5-1332 E1SE GO TO SEVNTN,. B5-1333 E03 GO TO SEVNTN,. B5-1334 E07 IF K=1 THEN GO TO SEVNTN,. B5-1335 E1SE GO TO EIGHTN,. B5-1336 E08 GO TO EIGHTN,. B5-1337 SEVNTN CTR(1,M)=CTR(1,M)+1 W=CTR(1,M)/12 GTR(4,M)=1 W=CTR(1,M)/12 GTR(4,M)=THEN B5-1337 SEVNTN CTR(1,M)=CTR(1,M)/12 B5-1340 GTR(4,M)=THEN B5-1341 GO TO POP B5-1343 GO TO POP B5-1343 CTR(1,M)=CTR(1,M)+1 W=CTR(1,M)/11,. GO TO POP B5-1343 CTR(5,M)=1+WW,. B5-1344 JF CTR(5,M)=1+WW,. B5-1346 MINETN CTR(3,M)=CTR(3,M)/10,. B5-1346 GO TO POP B5-1346 JF CTR(6,M) GT 10 THEN CTR(5,M)=10,. B5-1350 A=XABC(3,CTR(6,M)),. B5-1350 A=XABC(3,CTR(6,M)),. B5-1350 JF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 D=S01	GD TO SWITCH(6,J),.	85-13300
E02 IF K=1 THEN GO TO NINETN,. B5-1332 E1SE GO TO SEVNTN,. B5-1333 B5-1333 B5-1334 E07 IF K=1 THEN GO TO SEVNTN,. B5-1335 E1SE GO TO EIGHTN,. B5-1336 B5-1337 B5-1337 SEVNIN CTR(1,M)=CTR(1,M)+1,. WH=CTR(1,M)/12,. B5-1337 SEVNIN CTR(1,M)=CTR(1,M)+1,. WH=CTR(1,M)/12,. B5-1339 IF CTR(4,M) GT 10 THEN CTR(4,M)=10,. B5-1340 A= XABC(1,CTR(4,M)),. B5-1344 B5-1344 GO TO POP,. B5-1342 B5-1344 GO TO POP,. B5-1344 B5-1344 JF CTR(1,M)=I,. WH=CTR(2,M)/11,. B5-1344 GO TO POP,. B5-1344 B5-1344 B5-1344 JF CTR(5,M)=I,. WH=CTR(2,M)/11,. B5-1345 A= XABC(2,CTR(5,M)),. B5-1346 S5-1346 S5-1346 CTR(1,M)=CTR(1,M)+1,. WH=CTR(1,M)/10,. B5-1346 S5-1346 CTR(1,M)=CTR(1,M)+1,. WH=CTR(2,M)/10,. B5-1346 S5-1346	EO1 GO TO NINETN,.	85-13310
ELSE GO TO SEVNTN,. 85-1333 E03 GO TO SEVNTN,. 85-1334 E07 IF K=1 THEN GO TO SEVNTN 85-1335 ELSE GO TO EIGHTN,. 85-1336 E08 GD TO EIGHTN,. 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. WW=CTR(1,M)/12,. 85-1338 CTR(4,M)=I+WH,. 85-1339 IF CTR(4,M)=I+WH,. 85-1339 A= XABC(1,CTR(4,M)) 85-1341 GO TO POP 85-1342 EIGHTN CTR(2,M)=CTR(2,M)+1,. W=CTR(2,M)/11,. B5-1342 GO TO POP B5-1343 CTR(5,M)=1+WH,. B5-1344 GO TO POP B5-1345 B5-1343 CTR(2,M)=CTR(2,M)+1,. W=CTR(1,M)/11,. B5-1346 CTR(5,M)=1+WH,. B5-1347 B5-1346 MINETN CTR(3,M)+1,. W=CTR(1,M), DPOP B5-1345 A= XABC(2,CTR(5,M)), DPOP B5-1346 CTR(6,M)=1+WH,. B5-1347 NINETN CTR(3,M)+1, W=CTR(3,M)/10,. B5-1348 CTR(6,M)=1+WH,. B5-1345 D=SOIL(3,M),.	EOZ IF K=1 THEN GO TO NINEIN	85-13320
E03 GO TO SEVNTN,. R5-1334 E07 IF K=1 THEN GO TO SEVNTN,. 85-1335 ELSE GO TO EIGHTN,. 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. W=CTR(1,M)/12,. 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. W=CTR(1,M)/12,. 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. W=CTR(1,M)/12,. 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. W=CTR(1,M)/12,. 85-1339 GO TO POP,. 85-1341 85-1342 GO TO POP,. 85-1342 85-1342 GO TO POP,. 85-1343 85-1342 CTR(2,M)=CTR(2,M)+1,. W=CTR(2,M)/11,. 85-1343 CTR(5,M)=1+WW,. 85-1344 85-1343 CTR(5,M)=1+WW,. 85-1344 85-1344 IF CTR(3,M)+1,. W=CTR(3,M)/10,. 85-1344 MINETN CTR(3,M)+1,. W=CTR(5,M)/10,. 85-1345 MINETN CTR(3,M)+1,. W=CTR(6,M)/10,. 85-1350 MAX=VE,. S5-1350 S5-1350 S5-1350 MAX=YE,. S5-1355 S5-1355 S5-1355 G=MAX,. S5-1356 <td>ELSE GO TO SEVNTN,.</td> <td>85-13330</td>	ELSE GO TO SEVNTN,.	85-13330
EO7 IF K=1 THEN GO TO SEVNTN 85-1335 ELSE GO TO EIGHTN 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. WW=CTR(1,M)/12 85-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. WW=CTR(1,M)/12 85-1338 CTR(4,M)=I+WW,. 85-1339 IF CTR(4,M)GT 10 THEN CTR(1,M)/12 85-1340 A= XABC(1,CTR(4,M)J). 85-1341 GO TO POP 85-1342 EIGHTN CTR(2,M)=CTR(2,M)+1,. WW=CTR(2,M)/11 B5-1342 CTR(5,M)=1+WW,. B5-1343 CTR(5,M)=1+WW,. B5-1344 GO TO POP B5-1345 A= XABC(2,CTR(5,M))/10 B5-1346 GO TO POP B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. WW=CTR(3,M)/10 B5-1346 CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP POP E=A*EVP(L),. B5-1353 B5-1353 D=SOIL(3,M)*. B5-1353 D=SOIL(3,M)*. B5-1353 D=SOIL(3,M)*. B5-1355 G=MAX.	E03 GO TO SEVNTN,.	B5-13340
ELSE GO TO EIGHTN,. B5-1336 E08 GD TO EIGHTN,. B5-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. HW=CTR(1,M)/12,. B5-1338 CTR(4,M)=CTR(4,M)=1+WW B5-1339 IF CTR(4,M) GT 10 THEN CTR(4,M)=10,. B5-1340 A= XABC(1,CTR(4,M)),. B5-1341 GO TO POP,. B5-1342 EIGHTN CTR(2,M)=CTR(2,M)+1,. WH=CTR(2,M)/11,. B5-1342 GO TO POP,. B5-1343 CTR(5,M)=CTR(2,M)+1,. WH=CTR(2,M)/11,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1346 GO TO POP,. B5-1346 MINETN CTR(3,M)=CTR(3,M)+1,. WH=CTR(3,M)/10,. B5-1346 GO TO POP,. B5-1346 MINETN CTR(3,M)=CTR(3,M)+1,. WH=CTR(3,M)/10,. B5-1347 NINETN CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 AEXABC(3,CTR(6,M)),. B5-1350 AEXABC(3,CTR(6,M)),. B5-1350 AEXABC(3,CTR(6,M)),. B5-1350 B5-1350 B5-1350 AEXABC(3,CTR(6,M)),. B5-1355 B5-1355 G=MAX,. B	E07 IF K=1 THEN GO TO SEVNTN,.	85-13350
E08 GD TO EIGHTN,. B5-1337 SEVNTN CTR(1,M)=CTR(1,M)+1,. NW=CTR(1,M)/12,. B5-1338 CTR(4,M)=T NUM B5-1339 IF CTR(4,M) GT 10 THEN CTR(4,M)=10,. B5-1340 A= XABC(1,CTR(4,M)],. B5-1342 GO TO POP,. B5-1343 CTR(2,M)=CTR(2,M)+1,. WH=CTR(2,M)/11,. B5-1343 CTR(5,M)=1+WW,. B5-1343 CTR(5,M)=1+WW,. B5-1343 CTR(5,M)=1+WW,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1345 A= XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1346 . CTR(5,M)=10,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. WH=CTR(3,M)/10,. B5-1347 NINETN CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP E=A*EVP(L),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1356 BETA=0,. B5-135	ELSE GO TO EIGHTN,.	85-13360
SEVNTN CTR(1,M)=CTR(1,M)+1,. HW=CTR(1,M)/12,. B5-1338 CTR(4,M)=1+WW B5-1339 IF CTR(4,M) GT 10 THEN CTR(4,M)=10,. B5-1340 A=XABC(1,CTR(4,M)),. B5-1341 GO TO POP,. B5-1342 EIGHIN CTR(2,M)=CTR(2,M)+1,. WH=CTR(2,M)/11,. B5-1342 EIGHIN CTR(2,M)=CTR(2,M)+1,. WH=CTR(2,M)/11,. B5-1343 CTR(5,M)=1+WW,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1345 A=XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. WH=CTR(1,M)/10,. B5-1346 CTR(6,M)=1+WW,. B5-1346 CTR(6,M)=1+WW,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. WH=CTR(6,M) =10,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1359 A=XABC(3,CTR(6,M)),. B5-1353 POP E=A*EVP(1),. B5-1359 D=SOIL(3,M),. B5-1359 G=MAX,. B5-1359 D=SOIL(3,M),. B5-1359 DON=1 TO 4,. SOIL(5,N)=0,. B5-1362 CAL D=D+RA IN(L)=E,. B5-1363 IF	E08 GD TO EIGHTN,.	85-13370
CTR(4,M)=1+WW,. B5-1339 IF CTR(4,M) GT 10 THEN CTR(4,M)=10,. B5-1340 A=XABC(1,CTR(4,M)),. B5-1341 GO TO POP,. B5-1342 EIGHTN CTR(2,M)=CTR(2,M)+1,. WH=CTR(2,M)/11,. B5-1343 CTR(5,M)=1+WW,. B5-1343 CTR(5,M)=1+WW,. B5-1344 IF CTR(5,M)=1+WW,. B5-1345 A=XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1346 GO TO POP,. B5-1347 NINETN CTR(3,M)=1,. WH=CTR(3,M)/10,. B5-1346 GO TO POP,. B5-1346 CTR(6,M)=1+WW,. B5-1346 B5-1347 NINETN CTR(3,M)+1,. WH=CTR(3,M)/10,. B5-1348 CTR(6,M)=1+WW,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1359 A=XABC(3,CTR(6,M)),. B5-1350 B5-1353 D=5011(3,M),. B5-1353 D=SOIL(3,W),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1356 D=FA IN(L),. B5-1363 B5-1363	SEVNIN CTR(1,M)=CTR(1,M)+1,. WW=CTR(1,M)/12,.	85-13380
IF CTR(4,M) GT 10 THEN CTR(4,M)=10,. B5-1340 A= XABC(1,CTR(4,M)),. B5-1341 GO TO POP,. B5-1342 EIGHTN CTR(2,M)=CTR(2,M)+1,. WW=CTR(2,M)/11,. B5-1343 CTR(5,M)=1+WW,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(2,M)/11,. B5-1344	CTR(4,M)=1+WW,.	85-13390
A= XABC(1,CTR(4,M)),. B5-1341 GO TO POP,. B5-1342 E1GHTN CTR(2,M)=CTR(2,M)+1,. WW=CTR(2,M)/11,. B5-1343 CTR(5,M)=1*WW,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1345 A= XABC(2,CTR(5,M)),. B5-1346 . GO TO POP,. B5-1346 . . GO TO POP,. NINETN CTR(3,M)=CTR(3,M)+1,. WH=CTR(3,M)/10,. . . B5-1346 . . . B5-1349 <	IF CTR(4,M) GT 10 THEN CTR(4,M)=10,.	85-13400
GO TO POP,. B5-1342 EIGHIN CTR(2,M)=CTR(2,M)+1,. WW=CTR(2,M)/11,. B5-1343 CTR(5,M)=CTR(2,M)+1,. WW=CTR(2,M)/11,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1345 A= XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1346 . GO TO POP,. NINETN CTR(3,M)=CTR(3,M)+1,. VINETN CTR(3,M)=CTR(3,M)+1,. MUNETN CTR(6,M)=10,. B5-1349 IF CTR(6,M)=10,. IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP E=A*EVP(L),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1356 EFF= 0.7,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1358 DO N=1 TO 4,. SOIL(5,N)=0,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN DO,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1365 <td>A= XABC(1,CTR(4,M)),.</td> <td>85-13410</td>	A= XABC(1,CTR(4,M)),.	85-13410
EIGHTN CTR(2,M)=CTR(2,M)+1,. WW=CTR(2,M)/11,. 85-1343 CTR(5,M)=1+WW,. 85-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. 85-1345 A=XABC(2,CTR(5,M)),. 85-1346 GO TO POP 85-1347 NINETN CTR(3,M)=CTR(3,M)+1 WW=CTR(3,M)/10 85-1348 CTR(6,M)=1+WW,. 85-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. 85-1350 A=XABC(3,CTR(6,M)),. 85-1351 POP E=A*EVP(L),. 85-1355 D=S0IL(3,M),. 85-1355 G=MAX,. 85-1355 G=MAX,. 85-1356 EFF=0.7,. 85-1358 BET A=0,. 85-1359 DO N=1 TO 4,. SOIL(5,N)=0,. END,. 85-1363 IF D GT MAX THEN DO,. 85-1363 IF D GT MAX THEN DO,. 85-1365 EIR(1,M,L)=RAIN(L)-F,. 85-1365	GO TO PDP,.	. 85-13420
CTR(5,M)=1+WH,. B5-1344 IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1345 A= XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+I,. WW=CTR(3,M)/10,. B5-1349 CTR(6,M)=1+WW,. B5-1348 CTR(6,M)=CTR(3,M)+I,. WW=CTR(3,M)/10,. B5-1348 CTR(6,M)=CTR(3,M)+I,. WW=CTR(3,M)/10,. B5-1348 CTR(6,M)=CTR(6,M)=10,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 B5-1353 D=501L(3,M),. B5-1353 D=SOIL(3,M),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1358 BETA=0,. B5-1359 D0 N=1 TO 4,. SOIL(5,N)=0,. END,. B5-1363 D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN D0,. B5-1363 IF D GT MAX THEN D0,. B5-1365 EIR(1,M,L)=RAIN(L)-F,. B5-1364	EIGHTN CTR(2,M)=CTR(2,M)+1,. WW=CTR(2,M)/11,.	85-13430
IF CTR(5,M) GT 10 THEN CTR(5,M)=10,. B5-1345 A= XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. HW=CTR(3,M)/10,. B5-1348 CTR(6,M)=1+WW,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP E=A* EVP(L),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1359 D0 N=1 TO 4,. SOIL(5,N)=0,. END,. B5-1360 FND,. B5-1362 CAL D=D+RAIN(L)-E,. B5-1363 IF D GT MAX THEN DD,. B5-1365 EIR(1,M,L)=RAIN(L)-F,. B5-1364	C TR (5, M)=1+WW,.	85-13440
A= XABC(2,CTR(5,M)),. B5-1346 GO TO POP,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. WW=CTR(3,M)/10,. B5-1348 CJR(6,M)=1+WW,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP E=A*EVP(L),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1356 END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1364 F=D-MAX,. B5-1365 EIR(1,M,L)=RAIN(L)-F,.	1F CTR(5,M) GT 10 THEN CTR(5,M)=10,.	85-13450
GO TO POP,. B5-1347 NINETN CTR(3,M)=CTR(3,M)+1,. WW=CTR(3,M)/10,. B5-1348 CIR(6,M)=1+WW,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP E= A* EVP(L),. B5-1353 D=SOIL(3,M),. B5-1355 G=MAX,. B5-1355 G=MAX,. B5-1356 EFF= 0.7,. B5-1358 BETA=0,. B5-1359 DO N=1 TO 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1364 F=D-MAX,. B5-1365 EIR(1,M,L)=RAIN(L)-F,. B5-1366	A= XABC(2,CTR(5,M)),.	85-13460
NINETN CTR (3, M)=CTR (3, M)+1,. WW=CTR (3, M)/10,. B5-1348 CIR (6, M)=1+WW,. B5-1349 IF CTR (6, M) GT 10 THEN CTR (6, M)=10,. B5-1350 A= XABC (3, CTR (6, M)),. B5-1351 POP E= A* EVP(L),. B5-1353 D=SOIL (3, M),. B5-1354 MAX=YE,. B5-1355 G=MAX,. B5-1356 EFF= 0.7,. B5-1357 ALPHA=1.000,. B5-1358 BET A=0,. B5-1359 D0 N=1 TO 4,. SOIL (5, N)=0,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN DD,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1366	GO TO POP	85-13470
CIR(6,M)=1+WW,. B5-1349 IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. B5-1350 A= XABC(3,CTR(6,M)),. B5-1351 POP E=A*EVP(L),. B5-1353 D=SOIL(3,M),. B5-1353 MAX=YE,. B5-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1356 BETA=0,. B5-1358 BETA=0,. B5-1359 DO N=1 TO 4,. SOIL(5,N)=0,. END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M, L)=RAIN(L)-F,.	NINETN CTR(3,M)=CTR(3,M)+1,. WW=CTR(3,M)/10,.	85-13480
IF CTR(6,M) GT 10 THEN CTR(6,M)=10,. 85-1350 A= XABC(3,CTR(6,M)),. 85-1351 POP E= A* EVP(L),. 85-1353 D=S0 IL(3,M),. 85-1353 MAX=YE,. 85-1355 G=MAX,. 85-1356 EFF=0.7,. 85-1357 ALPHA=1.000,. 85-1358 BETA=0,. 85-1359 DO N=1 TO 4,. SOIL(5,N)=0,. END,. 85-1360 END,. 85-1363 IF D GT MAX THEN DD,. 85-1363 EIR(1,M,L)=RAIN(L)-F,. 85-1365	CIR (6,M)=1+WW,.	B5-13490
A= XABC(3,CTR(6,M)),. B5-1351 POP E= A* EVP(L),. B5-1353 D=SOIL(3,M),. B5-1354 MAX=YE,. B5-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1359 D0 N=1 FD 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN DD,. B5-1365 EIR(1,M,L)=RAIN(L)-F,. EIR(1,M,L)=RAIN(L)-F,. B5-1365	IF CTR(6,M) GT 10 THEN CTR(6,M)=10,.	85-13500
POP E= A* EVP(L),. B5-1353 D=SOIL(3,M),. B5-1354 MAX=YE,. 85-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1359 D0 N=1 FO 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1363 IF D GT MAX THEN D0,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1365	A= XABC(3,CTR(6,M)),.	85-13510
D=SOIL(3,M),. B5-1354 MAX=YE,. B5-1355 G=MAX,. B5-1356 EFF=0.7,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1359 DO N=1 FO 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1363 IF D GT MAX THEN DD,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1365	POP E=A*EVP(L),.	B5-13530
MAX=YE,. 85-1355 G=MAX,. 85-1356 EFF=0.7,. 85-1357 ALPHA=1.000,. 85-1358 BET A=0,. 85-1359 D0 N=1 10 4,. SOIL(5,N)=0,. END,. 85-1360 END,. 85-1362 CAL D=D+RA IN(L)-E,. IF D GT MAX THEN D0,. 85-1363 EIR(1, M, L)=RAIN(L)-E,. 85-1365 EIR(1, M, L)=RAIN(L)-F,. 85-1366	D=SOIL(3,M),.	B5-13540
G=MAX,. B5-1356 EFF=0.7,. B5-1357 ALPHA=1.000,. B5-1358 BETA=0,. B5-1359 D0 N=1 F0 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1364 F=D-MAX,. EIR(1, M, L)=RAIN(L)-E,. B5-1365 EIR(1, M, L)=RAIN(L)-E,. B5-1366	MAX=YE,.	85-13550
EFF= 0.7,. B5-1357 ALPHA=1.000,. B5-1358 BET A= 0,. B5-1359 D0 N=1 T0 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. IF D GT MAX THEN DD,. B5-1365 EIR(1, M, L)=RAIN(L)-E,. B5-1365 EIR(1, M, L)=RAIN(L)-E,. B5-1366	G=MAX, .	B5-13560
ALPHA=1.000,. B5-1358 BET A=0,. B5-1359 D0 N=1 T0 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. IF D GT MAX THEN D0,. B5-1365 EIR(1, M,L)=RAIN(L)-E,. B5-1365 EIR(1, M,L)=RAIN(L)-E,. B5-1366	EFF=0.7,.	B5-13570
BETA=0,. B5-1359 DO N=1 FO 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN DO,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1366	ALPHA=1.000,.	B5-13580
D0 N=1 F0 4,. SOIL(5,N)=0,. END,. B5-1360 END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN D0,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1366	BETA=0	B5-13590
END,. B5-1362 CAL D=D+RA IN(L)-E,. B5-1363 IF D GT MAX THEN DD,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M,L)=RAIN(L)-F,. B5-1366	DO N=1 TO 4,. SOIL(5,N)=0,. END.	85-13600
CAL D=D+RAIN(L)-E,. B5-1363 IF D GT MAX THEN DD,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1366	END, .	85-13620
IF D GT MAX THEN DD,. B5-1364 F=D-MAX,. B5-1365 EIR(1, M, L)=RAIN(L)-F,. B5-1366	CAL D=D+RAIN(L)-E	85-13630
F=D-MAX,. B5-1365 EIR(1, M,L)=RAIN(L)-F,. B5-1366	IF D GT MAX THEN DD,.	85-13640
EIR(1, M, L)=RAIN(L)-F,. B5-1366	F≈D-MAX,.	B5-13650
	EIR(1,M,L)=RAIN(L)-F,.	85-13660

- 74 -

EIR(2, M,L)=0,.	85-13670
D=MAX	85-13680
GO TO WATER	85-13690
END,.	B5-13700
ELSE IF D GT O AND D LE MAX THEN DO	85-13710
EIR(1,M,L)=RAIN(L),.	85-13720
EIR(2,M,L)=C,.	B5-13730
GO TO WATER	85-13740
END,.	B5-13750
ELSE IF D LE O THEN DC.	B5-13760
E IR (1, M, L) = RAIN(L)	85-13770
EIR(2,M,L)=(-D)+G,.	85-13780
GO TO WATER	85-13790
END,.	85-13800
WATER INTER1=EIR(2,M.L)/EFF INTER2=ALPHA*SOIL(4.M)	85-13810
QPSi1,M)=INTER1+INTER2+10,.	85-13811
QP S(3, M) =BE TA*SD11 (4, M) *16,.	85-13820
QPS(2,M)=SOIL(5,M)*SOIL(4,M)*0.4,.	85-13830
IF H(M)=1 AND D GE O THEN SOIL(2,M)=D.	85-13840
IF H(M)=1 AND D IT O THEN SCIL(2,M)=0,.	85-13841
IF H(M) NE 1 AND D GT O THEN SOIL(3,M)=D	85-13850
IF H(M) NE 1 AND D LE O THEN SOIL(3,M)=G,.	85-13851
END,. /* END LOOP M */	85-13860
X=0,. Y=0,. Z=0,.	85-13870
DO N=1 TO 4,. X=X+QPS(1,N),.	85-13880
¥=Y+QPS(3,N),.	85-13881
Z=Z+QPS(2,N),. END,.	85-13890
PUPLAND=PUPLAND+QPS(1,4),.	85-13891
GO TO SWITCH(7,3),.	85-13940
S01 GO TO SQ1,.	85-13950
S07., IF K=3 THEN GO TO S02,.	85-13960
ELSE GO TO SQ1,.	85-13970
S08 GD TO SQ2	85-13980
S10 IF K=3 THEN GO TO SQ1,.	B5-13990
ELSE GO TO SQ2	B5-14000
SQ1 SQ= (X+Y+Z)/0.75,. GD TD JUP,.	B5-14010
542 SQ= (X+Y+Z+SUPQ)/0.75+.	85-14020

JUP	ARGS=5, .	85-14030
· · · · · · · · · · · · · · · · · · ·	CALL LOOKUP (CAP, RAR, ARGS, WSA)	B5-14031
	LOOKUP PROCEDURE (X,Y,A,B),.	85-14040
	DECLARE (X(19),Y(19)) FIXED (10,2),	85-14050
	I FIXED(2),	85-14051
	A FIXED (8),	85-14060
	B FIXED (10,2),.	85-14061
	[F A LT X(1) OR A GT X(19) THEN DO	85-14070
PUT	FILE (CUP) EDIT ("WRONG DATA FOR LOOKUP")(SKIP(3),A)	. B5-14090
STOP	,. END,.	<u>85-14100</u>
	ELSE DO,.	85-14110
	00 I=1 TO 19,.	B5-14120
	IF A=X(I) THEN DO,. B=Y(I),.	85-14130
	RETURN: END:	85-14140
	END	B5-14150
	DO I=1 TO 18,.	85-14160
	IF A GT X(1) AND A LT X(1+1) TH	EN85-14170
	DO,. INTER3=(A-X(I))/(X(I+1)-X(I)),.	B5-14180
	INTER4=INTER3*(Y(I+1)-Y(I)),.	B5-14190
	B=Y{ 1) + INTER4,.	85-14191
	RETURN END	B5-14200
· · ·	END••	85-14210
	FND	B5-14220
	END 1 DOK UP +-	85-14230
		85-14240
	+ NP (] .)=6 ± E VD (]) + WSAA	85-14240
	IND12 1)-TNE(1)*8466 (0-1 ND1) 1)	05-14250
		85-14250
		B5-14200
		05-14270
		BJ-14200
15	S GI MAXS THEN DU,.	85-14290
	LSPIL=5-44X5+.	85-14291
	S=MAXS	B5-14293
	EN De .	85-14294
····	ELSE IE SIE MAYS AND S OF WINS THEN DO	85-12205
	1 CDI -0.	95-14273
	L JF IL ~ V7 •	02-14290

- 76 -

LDEF=0,.	B5-14297
END,.	85-14298
ELSE DO	85-14299
LSPIL=0,.	B5-14300
LDEF=MINS-S	85-14301
S=MINS	85-1430T
END, .	85-14302
SPIL=SPIL+LSPIL,.	85-14303
DEF=DEF+LDEF,.	B5-14304
PDI=PDI+DOMIND,. PSQ=PSQ+SQ.	B5-14310
PRA IN=PRAIN+RAIN(L),.	85-14320
PNETINF=PNETINF+LNR(2,L),.	85-14321
PEVP=PEVP+EVP(L),.	B5-14322
P INF=PINF+INF(1)*86400,.	B5-14330
PLOSSEV=PLOSSEV+LNR(1,L),.	B5-14331
PER1=PER1+EIR(1,1,L),.	B5-14332
P ER2=P ER 2+E 1R (1, 2, 1),.	85-14333
PER3=PER3+EIR(1,3,1),.	85-14334
PER4=PER4+EIR(1,4,1),.	B5-14335
DAY	85-14336
END,. /* END 100P L */	B5-14340
YRAIN=YRAIN+PRAIN+ •	B5-14350
YER1=YER1+PER1,. YER2=YER2+PER2,.	85-14410
YER3=YER3+PER3,. YER4=YER4+PER4,.	85-14420
YUPLAND=YUPLAND+PUPLAND,.	B5-14421
¥ SQ= ¥ SQ + Þ SQ • •	85-14430
Y DI=YDI+PDI,.	B5-14440
PRELES=PSQ+PDI,.	85-14450
YRELES= YRELES + PRELES	B5-14460
Y INF=YINF +P INF , .	85-14470
YLDSSEV=YLDSSEV+PLOSSEV;.	B5-14480
YNET INF=YNETINF +PNETINF .	85-14490
YSPIL=YSPIL+SPIL,.	B5-14491
YDEF=YDEF+DEF	B5-14492
GO TO SWITCH(8,J),.	85-14520
MI MN='JAN',. GD TD ERT,.	85-14521
M2 MN='FEB',. GO TO ERT,.	85-14530

M3 MN= MAR GD TD ERT,.	85-14540
N4 MN= 'APR ', GO TO ERT,.	B5-14550
M5 MN= 'MAY', GO TO ERT,.	B5-14560
M6 MN='JUN',. GN TN ERT,.	B5-14570
M7 MN='JUL',. GD TO ERT,.	B5-14580
M8 MN="AUG",. GD TO ERT,.	85-14590
M9 MN='SEP',. GO TO ERT,.	B5-14600
MA MN="OCT",. GO TO ERT,.	B5-14610
MB MN='NOV',. GO TO ERT,.	85-14620
MC MN=" DEC ",.	85-14630
ERT PUT FILE (CUP) EDIT (MN,K,PRAIN,PER1,PER2,PER3,	B5-14650
PER4, PPSQ, PPDI, PPRELES, PPINF, PPLOSSEV, PPNETINF,	B5-14660
\$\$,\$\$PIL,DDEF)(\$KIP(1),X(1),A(3),X(1),F(1),X(1),	B5-14670
F(5,1),X(1),F(5,1),X(1),F(5,1),X(1),F(5,1),X(1),	B5-14680
F(5,1),X(1),A(10),X(1),A(7),X(1),A(10),X(1),A(10);	,85-14690
X(1), A(7), X(1), A(11), X(1), A(10), X(1), A(10),	85-14700
X11),A(9)),.	85-14701
PUT FILE (CUP) EDIT ('(IR4, PPUPLAND, ')')(SKIP(1),	85-14708
x(34),A,X(1),A(7),A),.	85-14709
N=(J-1)*3+K	85-14710
SARY (I , N) = S , .	B5-14790
CDF(1, I, N)=PINF,.	<u>85-14800</u>
CDF(2,1,N)=PDI,.	B5-14810
CDF(3, I,N)=PSQ,.	85-14820
CDF(4, 1, N)=PEVP*10,.	85-14821
END. /* END LOOP K */	85-14830
END++ /* END LOOP J */	85-14840
PUT FILE &CUP.) EDIT ((130))(SKIP(1),X(1),A),.	85-14850
PJT FILE (CUP)EDIT(YYRAIN,YYER2,YYER4,YYDI,	85-14860
YY INF, YYNETINF, YS SP (L) (SKIP(1), X(5), A, X(5), A, X(5), A,	85-14870
X(0),A,X{9},A,X{7},A,X{9},A),.	85-14880
PUT FILE (CUP)EDIT(YYER1,YYER3,YYSQ,YYRELES,	85-14890
YYLUSSEV, YDDEF)(SKIP(1), X(11), A, X(5), A, X(4), A, X(5), A,	B5-14900
x(9),A,X(31),A),.	B5-14910
TSPIL=ISPIL+YSPIL.	85-14911
TDEF=TDEF+YDEF,.	85-14912
PUT FILE (CUP) EDIT ('(IR4',YYUPLAND,')')(SKIP(1),	85-14913

- 78 -

X130), A, X(1), A(10), A),.	85-14914
END: . /* END LOOP I */	<u>85-14920</u>
PUT FILE (CUP) EDIT (RESULT OF RESERVOIR OPERATION .	85-14921
'ING OPERATION CURVEJ I(PAGE, LINE(5), X(44), A, X(1), A),.	85-14922
PUT FILE (CUP) EDIT ((52) -*) (SKIP(1), X(44), A),.	85-14923
PUT FILE (CUP) EDIT L'TOTAL SPILLAGE, TTSPIL, "CUB. M.	85-14924
) (SK 1P (2), X(44), A, X(8), A, X(3), A),.	85-14925
PUT FILE (CUP) EDIT ("TOTAL DEFICIENCY ", TTDEF,	85-14926
'CUB. M.*)(SKIP(2),X(44),A,X(8),A,X(3),A),.	85-14927
ORDER UO N=1 TO 36	B5-14930
DO I=1 TO ZA	B5-14940
XY(1)= SARY(1,N),.	85-14950
INTER5=I/ZA,.	B5-14980
XX(I)=INTER5*10C,.	85-14981
END, .	85-14990
ZZ=ZA-1,.	85-15000
K ARA N S=0, .	85-15010
DO I=1 TO ZZ	85-15020
IF XY(I) GE XY(I+1) THEN NS=NS+1,.	B5-15030
ELSE DO,.	B5-15040
T=XY{I),.	85-15050
XY(I)=XY(I+1).	85-15060
XY([+1]=T,.	85-15070
END;	85-15080
END,.	B5-15090
IF NS=ZZ THEN GO TO CRAY,.	85-15100
ELSE GO TO KARA,.	B5-15110
CRAY AA{ 1, N}=XY(1)	85-15120
AA(2,N)=XY(ZA),.	85-15130
IF XY(ZA)=9999 DR XY(ZA)=MINS THEN GO JD	85-15140
PAPER. ELSE GO TO CLEAR.	85-15150
PAPER DO J=1 TO (ZA-1),.	85-15170
W=ZA-J	85-15180
IF XY(W)=MINS THEN GO TO	85-15190
THICK,.	85-15200
ELSE AA(2,N)=XY(W),.	85-15210
GO TO CLEAR,.	85-15220

THICK END,.	85-15230
IF XY(1)=MINS THEN DO,.	85-15240
AA(1,N)=0,.	B5-15250
AA (2,N)=0,. END,.	85-15260
CLEAR DO J=25 TO 75 BY 25,.	85-15270
IF J=25 THEN K=3,.	85-15280
IF J=50 THEN K=4,.	85-15290
1F J=75 THEN K=5,.	85-15300
ARG J=J	85-15301
CALL LOOKUP (XX,XY,ARGJ,ARGAA),.	85-15310
AA(K,N)=ARGAA,.	B5-15311
END,.	85-15320
END /* END LOOP N */	85-15330
PUT FILE (CUP) EDIT ('OPERATION CURVES FOR HOULUNG RESERVOIR')	85-15340
(PAGE, X[45], A),.	85-15350
PUT FILE (CUP) EDIT ((38)'-')(SKIP(1), X(45), A),.	85-15360
PUT FILE (CUP) EDIT ('N', CURVE 1', CURVE 2', CURVE 3',	85-15370
*CJKVE 4', *CURVE 5', *CURVE 6')(SKIP(2), X(20), A, X(6),	85-15380
A, X (8 }, A, X (8), A), .	85-15390
PUT FILE (CUP) EDIT (193)*-*)(SKIP(1),X(20),A),.	85-15400
DO N=1 TO 36,.	B5-15410
PUT FILE (CUP) EDIT (N,AAA(1,N),AAA(2,N),AAA(3,N),	85-15420
AAA (4, N), AAA(5, N), AAA(6, N)) (SKIP(1), X(20), F(2),	85-15430
6 (X(5),A)),.	85-15440
END, .	85-15450
YYSUD=0,. YYDT=0,.	85-15460
CURVE. DO K=1 TO 6	B5-15470
ANNEE DO I=1 TO ZA	85-15480
YCC=0,. YCR=0,. YCF=0,. YCD=0,.	85-15490
YSP IL=0,. YU=0,. YDEF=0,. YDT=0,.	85-15500
PUT FILE (CUP) EDIT (HOULUNG RESERVOIR OPERATION STUDY.,	B5-15510
BASED ON OPERATION CURVE '+K	B5-15520
(PAGE, X(45), A, A, F(1)),.	85-15530
PUT FILE (CUP) EDIT ('YEAR', 'PT', 'IRRIGATION'	,85-15540
DOMESTIC &', 'REQUIRED', 'NET', 'OPERATION',	85-15550
STDRAGE*, SPILLAGE*, AMOUNT OF!, DEFICIENCY, DT')	85-15560
(SKIP(2), X(1), A, X(1), A, X(1), A,	85-15570

- 80 -

X(5), A, X(2), A, X(6), A, X(11), A, X(2), A, X(5), A	,85-15580
X(6),A,X(5),A,X(2),A),.	85-15590
PUT FILE (CUP) EDIT ('REQUIREMENT', 'INDUSTRY'	,85-15600
*RESERVOIR *, 'RESERVOIR *, 'CURVE *, 'UTILIZED *) 85-15610
{ SK IP (1), X(9), A, X(4), A, X(4), A, X(5), A,	B5-15620
X(5),A,X(32),A},.	B5-15630
PUT FILE (CUP) EDIT ('REQUIREMENT', 'RELEASE',	B5-15640
'INFLOW', 'INFLOW') (SKIP(1), X(24), A,	B5-15650
X(1),A,X(7),A,X(45),A),.	85-15660
PUT FILE (CUP) EDIT ('(CUB.N.)','(CUB.M.)',	85-15670
(CUB_M_),*(CUB_M_)*,*(CUB_M_)*,*(CUB.M_)*,	85-15680
(CUB.M.),*(CUB.M.)*,*(CUB.M.)*)(SKIP(1),	85-15690
X(10),A,X16),A,X(4),A,X(6),A,X(6),A,X(3),	85-15700
A, X(5), A, X(5), A, X(6), A),.	85-15710
PUT FILE (CUP) EDIT ((131)*)(SKIP(1),X(1),A),.	B5-15720
IF I=1 THEN DO	85-15740
S=MA XS,.	85-15750
IB=19,.	B5-15760
END;.	B5-15770
ELSE IB=1,.	B5-15780
DIS DO N=IB TO 36	85-15790
IF AA(K,N)=0 THEN DO	B5-15800
IF N LE 36 THEN P=N+1.	85-15810
IF N=36 THEN P=N-1,.	85-15820
AA(K,N)=AA(K,P),.	85-15830
END,.	85-15840
IF S GE AA(K,N) THEN	85-15850
THETA=1.0,.	85-15860
ELSE THETA=0.7,.	B5-15870
CR=THETA+CDF(3,1,N)+CDF(2,1,N),	.85-15880
ARGS=5,.	85-15881
CALL LOOKUP(CAP,RAR,ARGS,WSA),.	85-15882
W SA A=W SA /100,.	85-15883
T≖CDF{4+I,N},.	B5-15884
PE VP=T/10,.	85-15885
LOSSPEV=6*PEVP*WSAA,.	85-15886
DELTS=CDF(1,T,N)-LOSSPEV-CR,.	B5-15890

- 81 -

S=S+DELTS .	85-15900
IF S GT MAXS THEN DO	85-15910
SPIL=S-MAXS,.	85-15920
DEF≈0,.	85-15930
DT=0,.	85-15940
U=CDF(1,I,N)-SPIL,.	85-15950
S=MAXS,	85-15960
END , .	85-15970
ELSE IF S LE MAXS AND S GE MIN	S 85-15980
THEN DO,.	85-15990
SPIL=0,.	85-16000
DEF=0,.	85-16010
U=CDF(1,1,N),.	85-16020
DT=0,.	B5-16030
END,.	B5-16040
ELSE DO	B5-16050
DEF=MINS-S,.	B5-16060
DT=1,.	85-16070
SP [L =0	85-16080
U=CDF(1,I,N),.	B5-16090
S=MINS+•	85-16100
END,.	85-16110
YR= 1+1950, .	85-16111
<pre>PUT FILE(CUP)EDIT(YR,N,CCDF(3,I,N),</pre>	85-16120
CCDF(2, 1, N), CCR, CCDF(1, 1, N), AAA(K, N), SS,	85-16130
	B5-16140
X[1],F[2],X[2],A,X[1],A,X[5],A,X(4],A,	85-16150
X(4),A,X(1),A,X(3),A,X(4),A ,X(4),A,	85-16160
.X(3),F(1)),.	85-16170
YCR=YCR+CR,.	85-16180
YC F= YC F+C DF(3,1,N),.	85-16190
YCD=YCD+CDF(2,1,N),.	85-16200
YCC=YCC+CDF(1,I,N),.	85-16210
YSP IL=YSP IL+SPIL+.	85-16220
YU=YU+U,.	85-16230
YDEF=YDEF+DEF	85-16240
YD T= YD T+D T ••	85-16250

EN	D. /* END LOOP N (CURVE) */	85-16260
. PUT FIL	E (CUP) EDIT ((131)'-')(SKIP(1),X(1),	B5-16270
A1) .	85-16280
PUT FIL	E (CUP) EDIT (YCCF,YCCD,YCCR,YCCC,	85-16290
YS SP 1	<pre>(L,YUU,YDDEF,YDT)(SKIP(1),X(7),A,X(1),</pre>	85-16300
A, X(2	2), A, X(1), A, X(25), A, X(1), A, A, X(2),	B5-16310
F12)),.	85-16320
YY SUD{	L,K)=YYSUD(1,K)+YSPIL,.	85-16330
YYSUD(2	2,K)=YYSUD{2,K}+YU,.	85-16340
YYSUD(3, K) = Y Y SUD(3, K) + YDEF, .	85-16350
YYDT(K)=YYDT(K)+YDT,.	B5→16360
END.	/* END LOOP I (CURVE) */	85-16370
END,.	/* END LOOP K (CURVE) */	85-16380
SELECT PUT FILE (CUP)	EDIT (*RESULT OF RESERVOIR OPERATION*	,85-16660
* BASED ON SI	(OPERATION CURVES!)[PAGE,X(42),A;A),.	B5-16670
PUT FILE (CUP) ED	IT ('OPERATION', 'TOTAL', 'TOTAL', 'TOTAL'	, B5-16680
• TOTAL •)(SKIP(1),X	20), A, X(9), A, X(16), A, X(18), A, X(14), A),	.85-16690
PUT FILE (CUP) ED	IT ('CURVE','SPILLAGE','UTILIZED',	B5-16700
DEFICIENCY', 'T	IME OF ') (SKIP(1), X{23), A, X{10}, A, X(13),	B5-16710
A, X(15), A, X(9),	A),.	B5-16720
PUT FILE (CUP) ED	IT ('INFLOW','DEF.'){SKIP(1),X(59),A,	85-16730
X(36),A),.		B5-16740
PUT FILE (CUP) ED	IT ('CUB.M.', 'ORDER', 'CUB.M.', 'ORDER',	85-16750
CUB.N.I. ORDER	<pre>R', 'TIMES', 'DRDER')(SKIP(1),X(35),A,</pre>	85-16760
X(4), A, X(6), A, X	((4),A,X(6),A,X(4),A,X[6),A,X[2),A),.	85-16770
PUT FILE (CUP) EDI	F ((94))(SKIP(1),X(20),A),.	85-16780
DU K=1 TO 6		B5-16790
PUI FILE(CUP) ED	IT(K, YYSSUD(1,K),*(*,*)*,	B5-16800
	YYSSUD(2,K),*(*,*)',	85-16810
· · · · · · · · · · · · · · · · · · ·	YYSSUD(3,K),*(*,*)*,	B5-16820
	YYDT(K),*(*,*)*){SKIP(1),X(25),	85-16830
	F(1),X(4),A,X(1),A,X(1),A,	B5-16840
······	X(2),A,X(1),A,X(1),A,	85-16850
<u> </u>	X(2),A,X(1),A,X(1),A,	85-16860
	X(7),F(4),X(3),A,X(1),A),*	85-16870
END, .		85-16880
J13 ,.		85-16881
END HOULUNG'.	- 83 -	B5-16890

