第三章 種蝦的培育

草蝦種蝦的研究雖然已有多年的歷史,但大多偏重在現場生產和應用方面,關於人工培育種蝦系統的建立則少有研究報告, 其他對蝦類種蝦培育的相關研究也非常少(Primavera, 1985)。

綜合過去種蝦培育的方法,可分爲一段式(Lin et al.,1989),二段式(Rodriquez,1981),三段式 (Aquacop,1983),與多段式(Santiago,1977)培育法。這些方法共同之處都是以低密度促進種蝦成長。分段培育則是逐段降低放養密度,但第一段的放養都有達到集約式養殖密度。分段培育除了提高培育池的利用率外,主要目的是利用換池給予種蝦全新而良好的生長環境,但是各種培育種蝦的方式,則沒有深入研究和比較各種方法的優劣性。

本試驗採用一段式及二段式方法培育種蝦,因爲多段式培育法所培育出的種蝦數量受限較大,而且換池頻率過高,花費的人工非常大,實用性並不適合臺灣的主客觀環境,所以不採用此方法來培育種蝦。三段式培育法的第一階段,類似本省的黑殼蓄養,所以將它歸類爲二段式培育法。

本實驗是利用三種方法培育種蝦,並且根據種蝦的成長、活存率討論各種方法的優劣。

培育方法分別爲二段式培育法:每平方公尺 30 尾的密度將種蝦培育至 30 mm 頭胸甲長時,轉移至新池以每平方公尺7 尾的密度繼續培育。另外 二種方法爲一段式培育法:密度分別爲每平方公尺 5 尾及 10 尾。

培育方法:

I·二段式培育法:

0k,,2k放養密度為 30 尾 / 平方公尺,於 A 池放養 PL 17 蝦苗,當頭胸甲 長為 28.2 mm 時,移出 7500 尾到 B 池。

II·一段式培育法:

- 1.放養密度爲 5 尾 / 平方公尺, 於 C 池放養 PL 17 蝦苗。
- 2.放養密度爲 10 尾 / 平方公尺,於 D 池放養 PL 17 蝦苗。

實驗結果 A 池於第 180 天的活存率為 75 %,移出 7500尾至 B 池。 第 386 天活存率為 23.3 %,累積活存率為 19.8 %。 平均頭胸甲長為 43.8 mm , 雌蝦爲 45.3 mm , 雄蝦爲 42.2 mm。雌雄比例爲 51.4 比 48.6 (Table 1)。

B 池的草蝦在前 60 天的成長與 A 池沒有顯著的差異(t=1.847,p(0.05)。 而後二池蝦的成長差異逐漸變大(Fig. 1)。 第205 天,平均頭胸甲長爲 49.0 mm,雌蝦爲 51.6 mm,雄蝦爲 41.8 mm。活存率爲 54.3 %,累積活存率爲 46.2 %。 雌雄比例爲 54.1 比 45.9。

C 池草蝦在第 285 天的活存率為 28.1 %, 平均頭胸甲長為 55.9 mm, 雌蝦為 61.2 mm, 雄蝦為 53.0 mm。雌雄比例為 61.4 比 38.6 (Table 1)。

D 池草蝦在前 60 天的成長與 C 池沒有顯著的差異(t=0.871,p<0.05),而後二池成長速度的差異則逐漸變大,但是在243 天以後,D 池的速度較 C 池快(Fig. 1)。第285 天 D 池的活存率爲 33.7 %, 較 C 池高(X=115.4,p<0.001),平均頭胸甲長爲 55.3 mm,雌蝦爲 58.2 mm,雄蝦爲 51.9 mm。雌雄比例爲 53.8 比 46.2 (Table 1)。

試驗蓄養結束時,各池草蝦頭胸甲長都呈對稱的分布(Fig. 2)。池蝦平均體型愈大者,雌雄之間頭胸甲長的差異愈大(Fig. 3),二者間呈直線關係,其迴歸方程式爲:

$$Y = 0.251 X - 6.824$$

 $r = 0.944 t = 4.059 p<0.05$

其中 Х 為各池雌蝦減雄蝦的頭胸甲長,Y 為各池蝦之平均頭胸甲長。

池蝦體型愈大時,雌蝦所佔的比例愈高(Fig. 4),體型的變異則愈小(Fig. 5);平均頭胸甲長與其變異係數的對數轉值呈直線關係,其迴歸方程式爲:

雌蝦: Y = -2.933 X + 5.888 r = 0.977 t = 6.446 p<0.05

雄蝦: Y = -3.235 X + 6.187r = 0.954 t = 4.494 p<0.025

其中 X 爲各池雌或雄蝦平均頭胸甲長之對數轉值,Y 爲頭胸甲長的變異係數之對數轉值。

B 池密度雖然爲 A 池之 0.4 倍,但是前 60 天的成長並沒有顯著快於

A 池,原因可能是草蝦經過換池之後,在適應階段的成長受到了抑制 (Macquire and Leedow,1983)。此外,這段時間,乾淨的池底使小型生物不易大量繁生所致,Schroeder(1978)與 Ruberight(1981) 表示即使在充分投餌的集約式養殖池,池中小型生物仍然是重要的營養來源。試驗結果中 B 池種蝦並沒有預期的成長快,可能是草蝦移入 B池五十天後即進入冬天,三個月的低水溫期,使得池蝦成長緩慢。

C 池的密度為 D 池的 0.5 倍,但是前 60 天,二池的成長亦無顯著的差異。可能是二池的密度都很低,所以這段時期食物的競爭與空間的限制,都尚未產生顯著的影響。試驗結束時,從二池的體長組成都是呈對稱分布可知,二池草蝦還未達到極限體長的階段。試驗未期 D 池的成長速度有較 C 池快的趨勢,可能是 C 池蝦接近極限體長。

Aquacop (1983)表示培育的草蝦頭胸甲長達 46.5 mm 後,即可成熟產卵。但是 Lin (1991)及本論文第四章則認爲體重 90 g 以上或頭胸甲長54.2 mm 以上,才是適當的產卵體型。Villegas et al. (1986)表示體型較大的草蝦所產的卵具有較佳的品質。B 池雖然有高活存率,頭胸甲長達46.5 mm 的雌蝦有 92.4 %,但大於 54.2 mm 者,祗有 26.4 %。而 C池與 D 池,頭胸甲長達 54.2 mm 者,分別有 98.0 %與 83.7 %。 雖然人工培育的草蝦在年齡五個月時即可產卵(Primavera, 1978), 但是Motoh (1981)認爲草蝦在年齡10 個月以上才能達到完全的成熟 ,發揮種蝦最大的生殖能力。 Millamen et al. (1986)則認爲年齡 8 個月即達到完全成熟的程度。因此,依本試驗的環境條件,D 池所用的是最佳的培育方式。利用二段式培育法草蝦成長較慢,是因爲第一階段的放養密度太高所致(Fig. 1)。一段式培育法活存率低,是因爲池蝦愈大時公母體型的差距愈大(第二章 Fig. 3 ,及本章 Fig. 3),使得公蝦被殘食的機會增加所造成的,使得母蝦所佔的比例隨著上升(第二章Fig. 4,本章Fig. 4)。

二段或多段式培育的目的主要是增加培育池的利用率,和讓種蝦能夠一直生活在較好的環境中。但由結果可知,二段式培育的效率較低,而且要維持良好的環境,可由管理的技術上著手改進。但是基於品種改良的需求,二段式培育仍然是必要的;因為第一階段可以培育不同品系的蝦苗,第二階段則篩選體型較佳的小蝦,作雌雄交叉混養。為了配合一段式培育優點,第一階段的培育時間可縮短為 1.5 至 2 個月,這時小蝦體型分布已經很明顯,容易作大小的選別,及性別的判讀,此外體型尚小也較容易操作篩選工作不易造成損傷。

参考文獻

- Aquacop (1983). Constitution of broodstock, maturation spawning and hatching systems for penaeid shrimps in the Centre Oceanologique du Pacifique. In: J. P. MacVey (Ed.), Crustacean Aquaculture. P.105-121. CRC Press, Boca Raton, FLorida.
- Dionne, M. (1985). Cannibalism, food availability, and reproduction in the mosquito fish (Gambusia affinis): a laboratory experiment. Am. Nat., 126(1):16-23.
- Lin, M. N., Ting, Y. Y. and Hanyu, I. (1988). Penaeid parental shrimp rearing I closing the cycle of Penaeus penicillatus Alock to F3 generation. Bull. Taiwan Fish. Res. In., 44:203-227.
- Lin, M. N., Ting, Y. Y. and Hanyu, I. (1989). Parental penaeid shrimp rearing (III) growth, gonadal maturation and fluctuation in copulatal rate of Penaeus monodon in the pond. Bull. Taiwan Fish. Res. In., 47:243-252.
- Lin. M. N. (1991). Personal communicationr.
- Maguire, G. B. and Leedow, M. J. (1980). A study of the optimum stocking density and feed rate for shool prawns Metapenaeus macleayi (Haswell) in some Australian brackish water Farming Ponds. Aquaculture, 30:285-297.
- Menz, A. and Blake, B. F. (1980). Experiments on the growth of Penaeus vannamei Boone. J. Exp. Mar. Biol. Ecol., 48: 99-111.
- Millamena, V. M., Primavera, J. H., Pudadera, R. A. and

- Caballeve, R. V. (1986). The effect of diet on the repro-ductive performance of pond reared Penaeus monodon Fab-ricius broodstock. In: J. L. Maclean, L. B. Dizon and L. V. Hosillos (Eds.). The First Asian Fisheries Forum pro-ceedings; 1985 May. 26-31; Manila, Philippines, Manlia: Asia. Fisheries, Society, 593-596.
- Motoh, H. (1981). Studies on the fisheries biology of the giant tiger prawn, Penaeus monodon in the Philippines SEAFDEC Technical Report, No., 7, p1-128.
- Phillips, N. W. (1984). Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detretivores. Bull. Mar. Sci., 35(3): 283-298.
- Primavera, J. H. (1978). Induced maturation and spawning in five-month-old Penaeus monodon Fabricius by eyestak ablat-ion. Aquaculture, 13:355-359.
- Primavera, J. H. (1985). A review of maturation and reproduction in closed thelycum penaeids. In: Y. Taki, J. H. Primavera and J. A. Llobrera (Eds.), Proceedings of the first international conference on the cultive of penaeid prawns / shrimps; 1984. December 3-7; Iloilo City, Phili-ppines, Iloilo City: Aquaculture Department SEAFDEC, p.47-64.
- Rodriguez, A. (1981). Growth and sexual maturation of Penaeus kerathurus (Forskal, 1775) and Palaemon serratus (Pennant) in salt ponds. Aquaculture, 24:257-266.
- Rubright, J. S., Harrell, J. L., Holcomb, H. W. and Parker, J. C. (1981). Responses of planktonic and benthic communities to fertilizer and feed application in shrimp mariculture ponds.

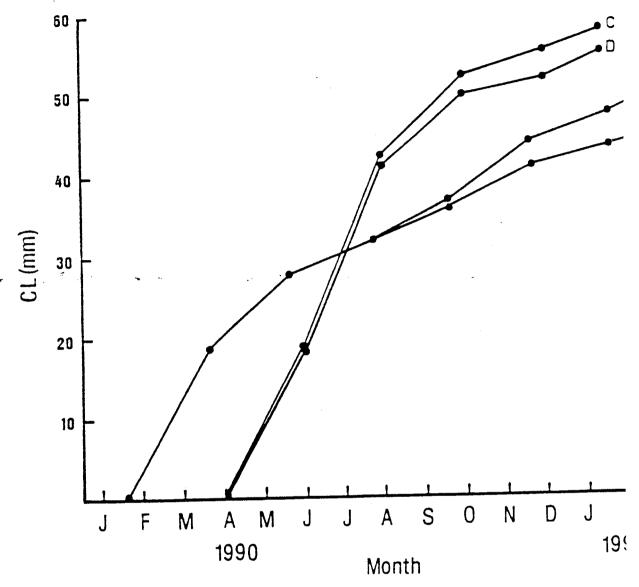

- Proc. World Maricult. Soc., 12(1);281-299.
- Santiago, A. C., Jr. (1977). Successful spawning of cultured Penaeus monodon Fabricius after eyestalk ablation. Aquaculture, 11:185-196.
- Schroeder, G. L. (1978). Autotrophic and heterotrophic pro-duction of micro-organisms in intensely manured fish ponds, and related fish yields. Aquaculture, 14:303-325.
- Singh, V. P. (1980). The management of fish ponds with acid sulfate soils. Asian Aquaculture, 3(4):4-6.
- Singh, V. P. (1982). Kinetics of acidification during inun-dation of previously dried acid sulfate soil material: implications for the management of brackishwater fish-ponds. Proc. Int. Symp. Acid sulfate Soils, p. 331-353. Bangkok
- Villegas, C. T., Trino, A. and Travina, R. (1986). Spawner size and the biological components of the reproduction process in Penaeus monodon Fabricius. In: J. I. Maclean, L. B. Dizon and L. V. Hosillos (Eds.). The First Asian Fisheries Forum. Asian Fisheries Socity, Manila, Phili-ppines.

Table 1. Carapace lengths (CL), stocking densities, durations of culture, sex ratios, and survival rates of Penaeus monodon cultured in the ponds by different culture strategy.

Pond	lnitial size	Stocking density (prawn/m)	Duration of culture (days)	Final	Final size (CL:mm)	.: mm) M/F	Sex ratio M : F	Survival rate(%)
A	PL17*	30**	386	42.2	45.3	43.8	48.6 : 51.4	17.0
В	28.2mm***	· · · L	205	45.8	51.6	49.0	45.9 : 54.1	60.2
S	PL17	S	285	53.0	61.2	58.8	38.6 : 61.4	28.1
D	PL17	10	285	51.9	58.2	55.3	46.2 : 53.8	33.7
	F W-1 AND							

At 180th day, 7500 prawns were transferred to pond B, and stocking density decreased to 24.0 prawns/m

Carapace length 28.2 mm

Growth curves of *Penaeus monodon* cultured in the ponds b Fig. 1 different strategy. CL=carapace length

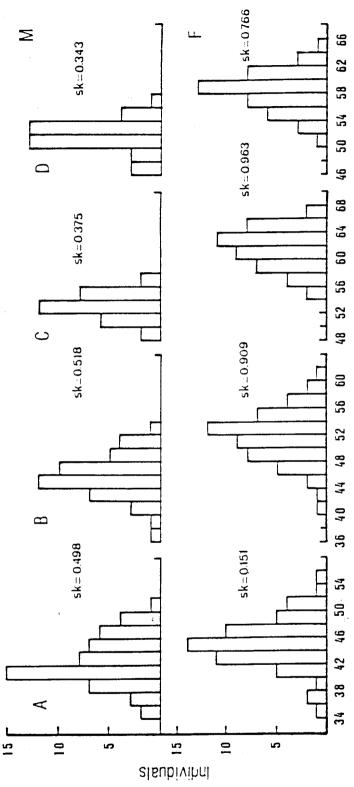


Fig. 2 Terminal size distributions of *Penaeus monnnodon* cultured in the ponds by different strategy, sk = skewness, M = male, F = female, CL = carapace length.

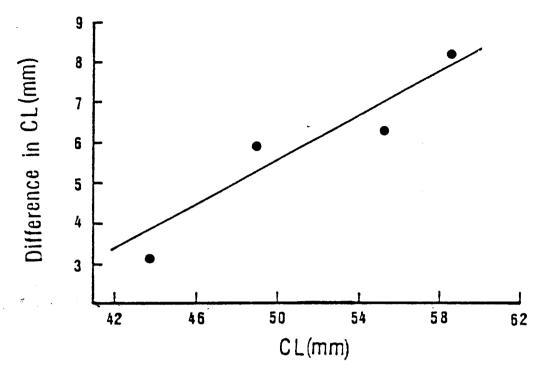


Fig. 3 relationship between difference in carapace length (CL) of female minus male and mean carapace length for *Penaeus mmonodon* populations cultured in the ponds.

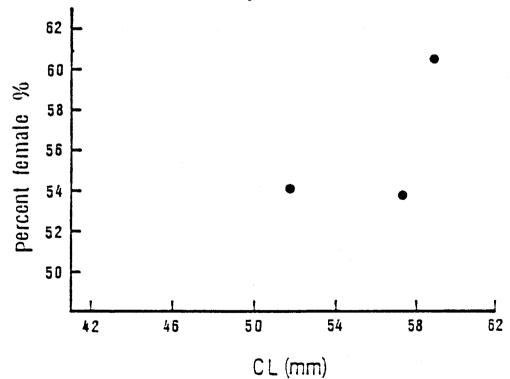


Fig. 4 Relationship bitween percent female and mean carapace length (CL) for *Penaeus monodon* population cultured in the ponds

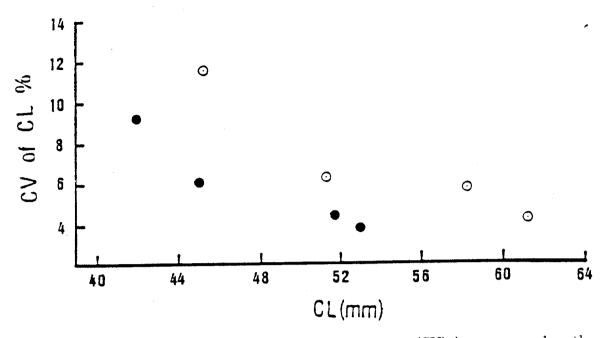


Fig. 5 Relationship between coefficient of variance (CV) in carapace length (CL) and mean carapace length for *Penaeus monodon* cultured in the ponds. \bullet =male, \bigcirc =female