七、臺南縣將軍與北門鄉沿海養殖區、漁港、 航道、大排水溝之水質調查研究

林世榮 陳萬生 丁雲源 臺灣省水產試驗所 臺南分所

摘 要

本調查研究於民國 78 年 9 月至 12 月在臺南縣將軍與北門鄉沿海養殖區、漁港、航道、大排水溝,共設定 11 個測站,在每月之月初,於日間最高潮前二小時,採樣分析,共完成 4 次監測,進行分析水文與水質化學,包含水溫、鹽度、pH、 溶氧、 BOD、 懸浮固體、總油脂、 酚類、 營養鹽與重金屬等以及養殖現況調查與水質評估。 兹將研究結果簡述如下:

(→)水溫、鹽度與 pH 值分別介於 15.5~33.5°C, 10~43%, 7.35~8.60 之間,呈正常性 水域與季節變化。

○ (二)溶氧量與 BOD 含量分別介於 0.81~9.48 ppm 與 0.56~7.39 ppm 之間, 在漚汪 與山子脚大排水溝中段,溶氧與 BOD 含量最多,而以將軍漁港含量最少。

⇒懸浮固體含量介於 23.6~85.2 ppm 之間,最高在山子脚大排水溝與北航道交會處, 最低在新鹽灘區第一工區西海岸。

四總油脂濃度範圍介於 22.22~128.15 ppm 之間,以漚汪大排水溝、青鯤鯓與北門漁港含量較多,而以第一號橋之含量最少。

→ 白酚類以將軍漁港含量最多高達 0.78 ppm,除新鹽攤區第一工區西海岸外,其他各測站皆已達異臭味界限值的 0.05 ppm。

份化學營養鹽中的亞硝酸鹽以樞汪大排水溝與北航道交會處含量較多高達 0.9 ppm;磷酸鹽以將軍漁港與樞汪大排水溝以及與北航道交會處最多高達 3.5 ppm;矽酸鹽含量以將軍漁港最多高達 2.0 ppm;所有營養鹽含量最少則位於新鹽灘區第一工區西海岸。

(出解離氨 (Ammonium) 含量以將軍漁港及漚汪大排水溝含量較多高達 9.0 ppm,最少位於新鹽灘區第一工區西海岸為 0.1 ppm。

 (Γ) 各測站重金屬($Cu \cdot Cd \cdot Zn \cdot Pb \cdot Hg$)含量不高,濃度範圍在安全濃度範圍內。 $(Cu \cdot Cd \cdot Zn \cdot Pb \cdot Hg)$)含量不高,濃度範圍在安全濃度範圍內。 $(Cu \cdot Cd \cdot Zn \cdot Pb \cdot Hg)$

臺南縣養殖漁業為全省之冠,以將軍、北門與七股鄉最為發達,往年養殖以虱目魚為主,75 年來改以草蝦為主,由於蝦病毒、水質、種苗等問題,養殖成功者不多,78 年又漸恢復養殖虱目魚與其他高經濟魚類如花跳、石斑、鯛類等。淺海養殖以文蛤與牡蠣為主。

(+)水質評估:

由各項調查結果研析,各測站水質以新鹽灘區西海岸與航道出海口附近優於漚汪與山子 脚大排水溝、北航道及青鯤鯓、北門與將軍漁港,該區域水質屬於乙、丙類海域水質標準, 臨近將軍溪下游之將軍漁港水體之水質最差,已達嚴重汚染程度。

1. 前 言

為配合國家經濟建設,充實臺南縣沿海地區漁業之發展,政府擬在將軍與北門之間沿岸,與建漁港,以改善漁民生活,增進漁民之收益與安全,然而建港與建港後,可能對附近海域環境有所影響。在正常海域狀況下,營養鹽、動植物性浮游生物與魚蝦貝類之存在,生長及相互間之循環,皆維持一平衡關係,若受到外在因子影響,則會破壞自然平衡,而影響水產物之生長、繁殖率與活存率等問題。

因此,本調查研究目的即在瞭解臺南縣將軍鄉與北門鄉的附近海域養殖區,現有漁港、航道以及 大排水溝等,在興建新漁港前之水文與水質化學的變化情形,以助於將來新漁港之建立;並且瞭解該 海域生態環境與養殖漁業的影響。

2. 實驗材料與調查分析方法

依計劃於 78 年 9 月 5 日與 6 日、10 月 3 日與 4 日、11 月 2 日與 3 日以及 12 月 1 日與 2 日,共計調查 4 次,採樣地點介於將軍與北門鄉之沿岸海域、漁港、航道與大排水溝等,共設有 11 個測站(表一、圖一)。每次採樣時間都在最高潮前二小時內完成,進行水樣採集時,於現場立即測得水溫、鹽度、酸鹼度 (pH)、溶氧量 (DO),而所採得之水樣,携囘實驗室進行生化需氧量 (BOD)、懸浮固體、總油脂量(正己烷萃取物)、氰化物、營養鹽(亞硝酸鹽、硝酸鹽、磷酸鹽、矽酸鹽)、解離氨、酚類與重金屬(銅、鎘、鋅、鉛與汞)等分析工作,兹將調查研究內容與分析方法,敍述如下:

(-)水文、溶氧、生化需氧量、氰化物之分析

於測站現場測定海水溫度、酸鹼度、鹽度、溶氧量;水溫以水銀溫度計測定;以 pH meter (Activon) 測定海水酸鹼度;以鹽度計 (ATAGO) 測定海水鹽度;並以測氧儀 (SUNTEX SD-70) 測定水中溶氧;至於生化需氧量 (BOD₅)、氰化物等依照 EPA 標準測定 (EPA 1983)。

□懸浮固體

將混合均勻之水樣,經濾紙過濾後,濾紙在 103~105°C 乾燥至恒重,濾紙增加之重量爲懸浮固體重 (EPA, 1983; APHA, 1981)。

測	站	號	碼	位	·
		1		漚 汪大排中段	
		2		第一號橋	
		3		青鲲鯓漁港	
		4		新鹽灘區第一	· 二區水閘口
		5		漚汪大排與北	航道交會處
		6		新鹽灘區第一	工區西海岸
		7		新鹽灘區北水	閘口
		8		北門漁港	
		9		山子脚大排中	段
	1	0		將軍漁港	
	1	1		山子脚大排與	北航道交會處

表一 臺南縣將軍與北門鄉西海岸養殖區水文、水質化學之測站

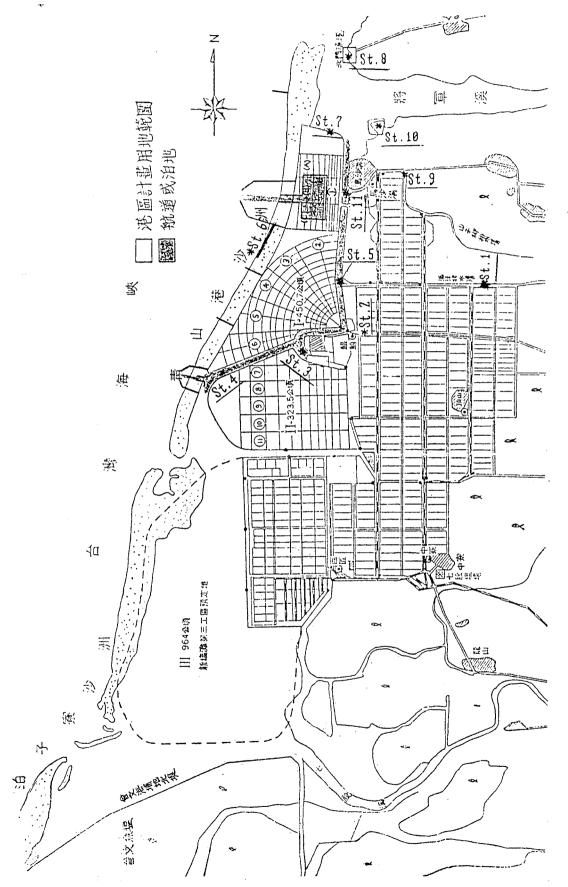


Fig. 1. Sampling locations along the western aquaculture area of Chiang-Chun and Pei-Men.

(三總油脂 (正己烷萃取物)

水中游離固體,油脂或水解後之金屬皂,用過濾法與液體分離後,以正已烷索氏萃取法萃取油脂,將正己烷蒸發後之餘留物稱重,即得總油脂量,包含礦物油脂與植物性油脂(APHA,1981)。

付付 (付付)

水中酚類物質,經蒸餾出後,在 pH 7.9±0.1 及鐵化鉀存在時與 4-氨基安替吡啉生成安替吡啉 染料 (Antipyrinedye), 直接以分光光度計 (CECIL, CE-292) 測其吸光度或經氣仿萃取後,以分光光度計測其吸光度定量之 (APHA, 1981; EPA, 1983)。

田化學營養鹽

(1)硝酸鹽:

使用甲醛胼及銅還原爲亞硝酸鹽後,按亞硝酸鹽方法測定(日本海洋學會,1979)。

(2)亞硝酸鹽:

係氨苯磺胺萘二胺顯色後測定試水在 Sulfanilic acid 存在下,形成 Diazonium 化合物,再 與 Dnaphthylamine 形成粉紅色的 azo 化合物而測定之(日本海洋學會,1979)。

(3)磷酸鹽:

試水在酸性溶液中與 Ammonium molybdate 反應形成 Ammonium Phosphomolybdate complex, 其在 Ascorbic acid 之存在下, 被還原成 Molybodenum blue 而測定之 (APHA, 1981)。

(4)矽酸鹽:

係與鉬酸鹽生成黃色複合物後,再使用硫酸甲銨酚還原為藍色之鉬酸鹽化合物而測定之(APHA, 1981)。

(5)氨鹽 (Ammonium):

NH4 在鹼性下轉變成 NH3 而與 Tartrate Potassium tetraiodomercurate 試液作用形成褐色的錯化合物而測定之(日本海洋學會,1979)。

以上鹽類之分析皆以光譜光電比色計 (CECIL, CE-292) 測定之。

(代)重金屬

水樣採集後,立即分析其中重金屬,如汞、銅、鎘、鋅、鉛等化合物。銅、鎘、鋅、鉛等金屬離子在適當 pH 範圍,與吡咯烷二硫代氨基甲酸銨形成錯化合物,經萃取至甲基異丁基酮溶劑層後,以原子吸收光譜儀 (HITACHI, Model 170-30) 在特定波長測定吸光度定量之 (Perkim-Elmer, 1971; APHA, 1981)。 汞化合物係經硝酸、 硫酸及高錳酸鉀氧化為二價汞化合物,再經經胺氯化氫還原為金屬態汞, 然後使用汞分析儀 (Coleman Mercury analysis, Model MAS-50) 分析,並以氣體載送至吸收管,以原子吸收光譜儀測定汞之含量 (APHA, 1981)。

(七)養殖漁業調査

收集臺南縣之漁業生產量值,並實地調查沿海鄉鎮之鹹水養殖與淺海養殖的養殖面積、放養種類 以及漁民養殖現況。

3. 結果與討論

(→)水文、溶氧、生化需氧量、氰化物等分析

表二~表五 , 列出將軍與北門鄉沿海養殖區 , 漁港航道與大排水溝等各測站之水文(溫度與鹽度)、酸鹼度 (pH)、溶氧量、生化需氧量 (BOD₅)、懸浮固體 (SS)、化學營養鹽、解離氨 (Am-

monium)、正己烷萃取物(總油脂量)與氰化物等分析結果。

由表二~表五,顯示水溫與鹽度分別介於 15.5~33.5°C 與 10~43%之間,呈正常性季節變化;每月份各站水溫很相近,9與 10 月份水溫相似,11 月起開始下降約 2°C ,到 12 月份則明顯下降至 15.5~18.8°C 之間。鹽度最高值出現在 12 月份第 2 站 ,最低出現在 9 與 10 月份之第 1 站 ,以大排水溝中段之鹽度較低。pH 值介於 7.35~8.60 之間,最高出現在 10 月份之第 6 站 ,最低在第 10 站,臨近沿海呈正常變化,而靠近將軍溪下游之第 10 站與 11 站有較低之趨勢。

溶氧量範圍介於 0.81~9.48 ppm 之間,最高在 10 月份之第1站,最低出現在同月份之第 10

Table 2. Hydrographical and chemical analysis of waters at eleven station on the western aquaculture area of Chiang-Chun and Pei-Men in September 1989

St. No.	Temp.	pН	Sal. (‰)	Do (ppm)	BOD (ppm)	SS. (ppm)	n-Hexane substance (ppm)	Nitrate (ppm)	Nitrite (ppm)	Phos- phate (ppm)	Silicate (ppm)	Ammo- nium (ppm)	CN. (ppm)
1	32.5	8.48	10	9.05	7.28	62.8	86.96	10	0.20	3.5	1.50	4.5	nd
2	32.0	8.45	35	6.03	4.32	47.6	27.62	5	0.02	0.5	0.25	0.4	nd
3	31.5	8.45	34	7.02	3.50	42.8	112.75	5	0.01	0.2	0.10	2.5	nd
4	31.2	8.52	30	7.50	2.26	38.2	92.22	3	<0.01	0.2	0.02	0.4	nd
5	32.0	8.48	29	8.30	5.68	69.4	85.58	8	0.07	0.8	0.15	3.6	nđ
6	32.3	8.49	32	6.51	2.87	26.4	68.75	<1	<0.01	<0.2	0.02	0.1	nd
7	31.1	8.33	31	6.63	2.81	40.8	66.31	3	0.02	<0.2	0.15	0.4	nd
8	32.0	8.36	32	8.23	3.84	32.6	128.15	3	0.02	0.8	0.15	0.2	nd
9	33.5	8.27	25	8.60	6.22	54.2	90.20	10	0.20	1.0	0.60	2.5	nd
10	32.2	8.18	25	3.65	1.46	40.8	32.11	5	0.06	2.0	0.80	8.0	nd
11	33.5	8.20	26	7.85	4.95	68.2	82.82	4	0.10	2.0	0.60	3.2	nd

CN: nd<0.03 ppm.

Table 3. Hydrographical and chemical analysis of waters at eleven station on the western aquaculture area of Chiang-Chun and Pei-Men in October 1989

St. No.	Temp.	pН	Sal. (‰)	Do (ppm)	BOD (ppm)	SS. (ppm)	n-Hexane substance (ppm)	Nitrate (ppm)	Nitrite (ppm)	Phos- phate (ppm)	Silicate	Ammo- nium (ppm)	(nnm)
1	30.0	8.07	10	9.48	7.39	65.0	110.00	10	0.30	3.5	1.20	3.6	nd
2	29.0	8.27	15	4.13	3.67	44.2	24.44	4	0.06	1.0	1.00	0.4	nd
3	30.0	8.10	28	5.00	3.03	47.8	113.33	8	0.25	1.0	0.40	4.0	nd
4	29.0	8.22	30	8.85	3.73	45.2	55.55	3	0.03	0.8	0.05	0.4	nd
5	30.0	8.10	24	6.57	4.87	69.8	78.88	10	0.20	3.5	0.40	3.2	nd
6	29.0	8.60	34	8.60	3.85	36.2	54.44	<1	<0.01	1.0	0.05	0.2	nd
7	29.0	8.10	32	5.65	1.80	41.0	57.77	5	0.02	1.0	0.10	0.4	nd
8	28.0	7.82	28	5.20	3.72	33.6	107.77	8	0.20	1.0	0.32	1.6	nd
9	29.5	7.80	20	6.30	5.90	52.2	56.66	8	0.20	1.5	0.56	3.2.	nd
10	30.0	7.35	10	0.81	0.56	36.8	71.11	2	<0.01	3.5	2.00	8.0	nd
11	30.0	7.61	23	2.75	2.28	56.8	78.88	5	0.20	1.5	0.40	4.0	nd

CN: nd<0.03 ppm.

Table 4. Hydrographical and chemical analysis of waters at eleven station on the western aquaculture area of Chiang-Chun and Pei-Men in November 1989

	St. No.	Temp.	pН	Sal. (‰)	Do (ppm)	BOD (ppm)	SS. (ppm)	n-Hexane substance (ppm)	Nitrate (ppm)	Nitrite (ppm)	Phos- phate (ppm)	(nnm)	Ammo- nium (ppm)	CN. (ppm)
	1	26.0	8.25	25	8.85	6.96	69.0	115.55	10	0.40	3.5	0.20	9.0	nd
	2	26.5	8.28	30	6.50	4.89	44.4	57.72	5	0.20	1.0	0.40	0.4	nd
	3	26.0	8.07	29	8.73	4.88	42.4	122.22	. 7	0.25	<0.2	0.30	1.4	nd
	4	26.0	8.20	30	8.17	3.28	44.4	106.66	3	0.03	<0.2	0.08	0.4	nd
	5	26.5	8.06	28	8.80	7.38	64.8	92.22	11	0.25	1.0	0.40	2.0	nd
	6	26.0	8.27	30	9.14	4.47	23.6	60.00	<1	0.02	<0.2	0.04	0.1	nd
	7	25.5	8.14	30	8.05	3.92	45.4	91.11	4	0.15	<0.2	0.16	0.3	nd
	8	26.5	7.90	28	5.99	3.24	29.2	98.88	10	0.10	1.0	0.16	1.2	nd
	9	28.0	8.05	25	5.51	4.84	58.0	80.00	15	0.40	1.5	0.24	1.6	nd
	10	28.0	7.76	20	3.95	3.35	41.4	55.55	1	0.08	2.0	0.60	9.0	nd
_	11	26.5	7.92	28	3.90	3.90	85.2	92.22	10	0.20	1.0	0.24	2.4	nd

CN: nd<0.03 ppm.

Table 5. Hydrographical and chemical analysis of waters at eleven station on the western aquaculture area of Chiang-Chun and Pei-Men in December 1989

St. No.	Temp.	pН	Sal. (‰)	Do (ppm)	BOD (ppm)	SS. (ppm)	n-Hexane substance (ppm)	Nitrate (ppm)	Nitrite (ppm)	Phos- phate (ppm)		Ammo- nium (ppm)	CN. (ppm)
1	15.5	8.23	31	8.52	6.35	55.4	97.77	30	0.80	2.0	0.32	5.0	nd
2	15.5	8.10	43	8.72	4.33	45.4	22.22	25	0.50	1.0	0.24	1.6	nđ
3	16.5	7.88	37	8.42	3.10	35.4	116.66	8 .	0.20	0.2	0.16	0.8	nđ
4	18.0	8.20	37	8.05	1.68	35.4	98.88	2	0.05	0.2	0.08	0.4	nd
5	16.5	7.80	34	8.01	4.83	69.2	86.66	30	0.90	1.5	0.60	6.0	nd
6	18.8	8.15	37	7.50	2.18	25.4	62.22	2	0.01	<0.2	0.24	0.2	nđ
7	18.5	8.18	35	8.65	3.01	41.2	78.88	5	0.02	0.5	0.24	0.4	nd
8	16.5	7.80	35	8.23	4.59	31.6	86.66	10	0.08	1.0	0.30	2.0	nd
- 9	17.0	7.92	31	6.26	4.78	42.8	57.77	25	0.80	2.0	0.60	7.0	nd
10	17.0	7.83	30	4.65	3.85	41.6	50.00	5	0.25	2.0	1.00	9.0	nd
11	17.0	7.92	34	7.83	5.69	72.2	58.88	20	0.15	1.0	0.40	5.0	nd

CN: nd<0.03 ppm.

站(將軍港)。五天生化需氧量(BOD₅)介於 $0.56\sim7.39$ 之間,最高值在 10 月份之第 1 站與 11 月份之第 5 站,最低在 10 月份之第 10 站。行政院衞生署於 75 年 2 月 4 日公告甲、乙與丙類海域水質標準,規定水體含溶氧量,分別不得低於 5.0、5.0 與 2.0 ppm;含 BOD 值不得高於 2、3 與 6 ppm。依溶氧含量第 10 站即將軍港水體已屬丙類標準。 第 1、5、9 與 11 站含有較多之 BOD 值,即大排水溝,以及其與北航道交會處含有大量浮游生物與有機物質,屬丙類海域水質標準,在航道出海口及西岸沿海亦屬略低於乙類海域水質標準。

(1)懸浮固體

由表二~五顯示懸浮固體範圍介於 23.6~85.2 ppm 之間,最高值在 11 月份之第 11 站,最低值出現在 11 月份之第 6站。由於懸浮固體多寡會影響濁度,懸濁物在鰓中之積存量,能直接造成魚類窒息或間接對生理上有影響,鮭稚魚在懸浮固體達到 75~85 ppm 時,稚魚的羣體行動便會改變,引起羣體之分散與下降現象,在第 1、5 與 11 站之懸浮固體已達 60 ppm,值得重視。

闫總油脂量分析

油脂除對水中溶氧有影響外,對水產物亦會產生異臭味問題,而失去商品價值,依日本水產用水基準,着臭界限為 1.7 ppm,若不考慮油臭問題,其對水產物之有害濃度是相當高的,依油品不同,有害濃度亦不同,依序為原油>汽油>礦油>噴射燃料;原油對淡水魚 0.3 ppm 有害,汽油對虹鳟 40 ppm 為有害界限,而對幼鮭則 100 ppm 為致死量,礦油 300 ppm 可驅除蜊蛄。本次所調查總油脂量介於 22.22~128.15 ppm (表二~五),第 1、3 與 8 測站含量較多,而以第 2 測站最低,相近水域比較,第 1 站比第 9 站含量多,而以 11 月份最高;第 5 與 11 站相差不多,而以第 2 站最低;三個漁港比較,依序為第 3 站>第 8 站>第 10 站;第 4 站大於第 7 站;第 6 站 9 月份較高,10 月份下降,11 與 12 月份再上昇。總油脂含量包含礦物性油脂與動植性油脂,將軍港水體由於 DO、BOD 含量甚低,浮游生物含量稀少,所測出總油脂含量少,與青鯤鯓及北門漁港相差將近一倍。

四酚類分析

酚類如 Phenol 屬毒性强之有機溶劑,對虱目魚 48 小時之 LC_{50} 為 30.25 ppm,對草蝦為 26.43 ppm(林,1988)。酚類亦會引起水產物產生異臭味,據俄亥俄河水質資料,容許界限值為 0.05 ppm(日本水資保護會,1965)。本次調查結果介於 $0.04\sim0.78$ ppm 之間(表十),以 9 月份 之第 6 站最低,而以 10 月份之第 10 站最高;由表十顯示第 1 站含量較第 9 站多,而第 11 站〉第 5 站〉第 2 站,11 月份含量較高;三個漁港比較,第 10 站〉第 8 站〉第 3 站,即將軍港含量最多;第 4 站在 11 月份大於第 7 站,其他月份很相近;而第 6 站由 9 月份之 0.04 ppm 上升到 11 月份之 0.1 ppm,12 月份再下降到 0.08 ppm。由上述濃度範圍,雖不致危害水產物,但是除第 6 站外,大都在異臭味界限上值,對水產物商品價值是值得重視的。

田化學營養鹽分析

浮游植物與藻類所必須之營養鹽包含硝酸鹽、亞硝酸鹽、磷酸鹽與矽酸鹽,水中這些化合物含量 多寡,直接影響其進行光合作用、生長與生存。

硝酸鹽測定濃度介於 <1~30 ppm,以 12 月份之第 1 與第 5 站含量最高,而 9~11 月份之第 6 站皆低於 1 ppm:由表二~五顯示,大排水溝以及其於北航道交會處, 及第 1 號橋在 12 月份含量高為 18~30 ppm 之間;而三個漁港都在 10 ppm 以下,以第 10 站含量較低;第 4 與第 7 站低於 5 ppm,第 6 站則低於 2 ppm。

亞硝酸鹽範圍介於 $<0.01\sim0.90$ ppm 之間,最高出現在 12 月份之第 5 站,最低則在 9 月份之第 4 與第 6 站,以及 10 月份之第 6 與第 10 站;由表二~五顯示,第 1 與第 9 站由 9 月份 0.2 ppm 一直上升到 12 月份之 0.9 ppm;第 $2 \cdot 5$ 與 11 站比較, $9\sim11$ 月份皆在 0.25 ppm 以下,而 12 月份在第 2 與 5 站分別上升為 0.5 與 0.9 ppm;第 $3 \cdot 8$ 與 10 站 4 個月份皆在 0.25 ppm 以下;第 4 與第 7 站含量低,除 11 月份之第 4 站在 0.15 ppm 外其餘月份都在 0.05 ppm 以下;第 6 站含量最低在 0.02 ppm 以下。

磷酸鹽濃度介於 $<0.2\sim3.5$ ppm 之間,以 9 月份之第 1 站與 10 月份之第 $1 \cdot 5$ 與 10 站含量較多,最小出現在 9 月份之第 6 與 7 站,以及 1 月份之第 $3 \cdot 4 \cdot 6$ 與 7 站;由表二~五顯示 , 第 1 站比第 9 站含量高;第 $2 \cdot 5$ 與 11 站比較,以第 2 站較低,除 9 月份外,維持在 1 ppm , 而第 5

站在 10 月份高達 3.5 ppm;三個漁港比較,以第 10 站含量最高,10 月份達 3.5 ppm,其他月份 含有 2 ppm,第 8 站維持在 1 ppm,而第 3 站在 1 ppm 以下,第 4 與第 7 站月變化很相似,第 6 站含量最低,除 10 月份含量 1 ppm 外,其他月份皆小於 0.2 ppm。

矽酸鹽濃度範圍介於 $0.02\sim2.00$ ppm 之間,最高出現在 10 月份的第 10 站(將軍漁港),最低在 9 月份的第 4 與 6 站;由表二~五顯示, 9 與 10 月份,第 1 比第 9 站含量較多, 但 11 與 12 月份則反之; 由第 2×5 與 11 測站來看, 除 10 月份之第 5 站含量 1 ppm 外, 其他月份皆在 0.6 ppm 以下;三個漁港則以將軍港(第 10 站)含量較多, 10 月份高達 2 ppm,其他二港(第 3 與 8 站)相差不多,在 0.4 ppm 以下;第 4 與 7 站比較則以第 7 站含量較多;第 6 站含量最低,除 12 月份為 0.24 ppm 外,其他月份皆在 $0.02\sim0.05$ ppm 之間。

其他水中化學物質如 Ammonium (解離氨)範圍介於 $0.1\sim9.0$ ppm 之間,最高出現在 11 月份之第 1 站與 12 月份之第 10 站,最低為 9 與 11 月之第 6 站,由表二~五顯示,第 1 比第 9 站含量較多,最高 11 月份達 9 ppm,而 12 月份二站皆達 5 與 7 ppm;第 2×5 與 11 站比較,則以第 2 站含量較少,皆在 1.6 ppm 以下,其他二站很相近,12 月份升高到 6 與 5 ppm;第 3×8 與 10 站比較,則以第 10 站含量最多,都在 $8\sim9$ ppm 之間;第 4 與第 7 站差別小,在 $0.3\sim0.4$ ppm 之間;而第 6 站含量最低在 $0.1\sim0.2$ ppm 之間。

由上述化學營養鹽與解離氨(Ammonium)指出在漚汪與山子脚大排水溝,及其與北航道交會 處與三個漁港,尤其是將軍漁港,含有豐富營養鹽與解離氨;臨近將軍溪下游之將軍港已受到嚴重汚 染,有磷酸鹽、矽酸鹽、解離氨含量多,亞硝酸含量低之現象。

(7)重金屬分析

本次重金屬分析項目包括銅、鎘、鋅、鉛與汞,分析結果如表六~九所示。汞含量在 11 個測站 均低於 0.5 ppb; 銅、鎘、鋅與鉛含量分別介於 4.5~16.0 ppb, <0.2~1.6 ppb, 4.0~15.0 ppb 與 1.0~3.2 ppb 之間。由表六~九得知,銅含量以 10 月份之第 10 站 (將軍港) 較多,11 月份之第 8 站最少;各相近水域比較,第 1 比第 9 站稍多;第 11 站比第 2 與 5 站含量較多;三個漁港比較則 第 10 站>第 3 站>第 8 站;第 4 站比第 7 站含量較高;第 6 站在 9 月份為 6 ppb,隨着月份逐漸下

Table 6. The heavy metal contents (ppb) of waters at eleven stations on the western aquaculture area of Chiang-Chun and Pei-Men in September 1989

St. No.	Cu	Cd	Zn	Pb	Hg
1	11.5	1.2	12.0	2.8	nd
2	8.0	0.6	8.0	1.6	nd
3	10.5	0.8	12.0	1.6	nd
4	7.5	0.6	6.5	1.4	nd
5	11.5	1.2	14.0	3.2	nd
6	6.0	<0.2	4.0	1.2	nd
7	6.0	0.5	4.0	1.4	nd
8	5.0	0.6	8.0	1.8	nd
9	9.5	1.0	11.5	2.2	nd
10	14.0	1.2	15.0	3.0	nd
11	12.5	1.2	14.0	3.2	nd

Hg: nd<0.5 ppb.

Table 7. The heavy metal contents (ppb) of waters at eleven stations on the western aquaculture area of Chiang-Chun and Pei-Men in October 1989

St. No.	Cu	Cd	Zn	Pb	Hg
1	11.0	1.0	12.5	2.4	nd
2	9.0	0.6	6.5	1.8	nd
3	10.0	0.8	12.0	1.8	nd
4	8.0	0.5	6.5	1.8	nd
5	10.0	1.4	12.0	2.8	nd
6	6.0	<0.2	5.0	1.4	nd
7	6.5	0.5	5.5	1.4	nd
8	6.0	0.8	8.5	2.0	nd
9	9.0	1.0	10.0	2.4	nd
10	16.0	1.6	12.0	2.8	nd
11	10.0	1.5	12.5	3.0	nd

Hg: nd<0.5 ppb.

Table 8. The heavy metal contents (ppb) of waters at eleven stations on the western aquaculture area of Chiang-Chun and Pei-Men in November 1989

St. No.	Cu	Cd	Zn	Pb	Hg
1	10.5	0.8	12.0	2.6	. nd
2	7.5	0.4	6.0	1.6	nd
3	8.0	0.8	10.0	1.8	nd
4	7.0	0.5	7.0	1.8	nd
5	9.0	1.2	12.0	3.0	nd
6	5.0	<0.2	4.0	1.2	nd
7	5.0	0.4	4.0	1.6	nd
8	4.5	0.7	7.5	1.6	nd
9	8.0	0.8	10.0	2.0	nd
10	12.0	1.2	12.5	2.6	nd
11	10.0	1.2	12.0	3.0	nd

Hg: nd<0.5 ppb.

降到 12 月份之 4 ppb。編含量以 10 月份之第 10 站較多,最少出現在第 6 站;由相近水域比較,如表六~九所示,第 1 與第 9 站很相似;第 5 與 11 站相差很少,而第 2 站含量較少;三個漁港則以第 10 站>第 3 站>第 8 站;第 4 與第 7 站相近,在 0.4~0.6 ppb 之間;第 6 站各月份均小於 0.2 ppb。鋅含量最高出現在 9 月份之第 10 站,最低在第 6 與 7 站,由表六~九顯示,第 1 比第 9 站稍多;第 2 、 5 與 11 站比較,第 5 與 11 站相似,第 2 站較少;第 4 比第 7 站稍多;第 6 站最少介於 4.0~5.0 ppb 之間;三個漁港比較以第 10 站>第 3 站>第 8 站,即將軍港含量最多。鉛含量最高出現在 9 月份之第 5 與 11 站,最低在 12 月份之第 6 站,由表六~九所示,第 1 站在 11 與 12 日份比第 9 站会量多;第 2 、 5 取 11 站比較,則第 2 站較少,第 5 取 11 站無差別,三個漁港以將

第二位,宜蘭縣第三位,臺南縣佔第四位。臺南縣生產量達 53,987 噸,以漁業種類別生產量值來看,臺南縣無遠洋漁業,而近海漁業與沿岸漁業生產量少,分別為 3,649 噸與 1,358 噸,佔全省第 11 位與第 12 位,但是養殖漁業為全省之冠,總生產量達 48,980 噸,總值達 2,481,816 千元,由此可見臺南縣之養殖漁業的重要(漁業年報,1988)。

臺南縣養殖漁業,以臨近西海岸之七股、將軍、北門等三鄉最爲發達,經調查,以上三鄉之養殖魚種與面積,列如表十一。往年這三鄉,魚塭養殖以虱目魚爲主,但近年來虱目魚價格下跌,養殖利潤低,又草蝦苗繁殖技術確立,人工配合飼料開發成功,養殖利潤看好,以致從 75 年起由虱目魚塭改變爲蝦池者,將近一半以上;但是好景不常,由於該地區水源受汚染、蝦類病毒、種苗等問題發生,養殖成功者甚少,78 年度起又有恢復養殖虱目魚及其他高經濟魚類,如花跳、石斑、鯛類之趨勢;由於該養殖區之水源含有豐富營養鹽與有機物,對藻類培養較爲容易,以致喜食底藻,價格好之花跳,漸有取而代之現象。除草蝦養殖失敗外,放養在魚塭之文蛤亦常受汚染水源之影響,而大量死亡發生;淺海養殖之文蛤除每年農曆三、六與九月受氣候影響,有死亡發生外,受到工業、養殖畜牧業之廢水影響亦是主要因素之一;牡蠣養殖在河川出海口附近海域,以及養殖區出入排水道,由於浮游生物與有機物多,較易養肥,但常受上游汚染源影響,而導致死亡現象發生 (Hung 1975, 1981; Jeng, 1975)。

表十一 臺南縣七股鄉、將軍鄉、北門鄉之鹹水養殖面積與魚種調查表

單位:公頃

養	殖	別	魚	種	別	七股乡	郎面 積	將軍	鄕 面 積	北	門鄉面積
池	塘養	殖		虱目魚		1,	653		180		750
			草蝦、	紅尾蝦、野		1,	500		337		921
				花 跳			120		90		450
				石 斑			10		2		3
			黑	鯛、黄鰭	調		15		2		4
				鱸			3		1		_
				蟹			2		2		1
				蟹 蝦			8		_		
			7.	斑、文蛤	ī		40				2
			目庭	魚、文蛤	、蝦		100		8		24
			吳郭	『魚、虱目	魚		2				
			虱目魚、	・蝦、文蛤	、 石斑		25		_		· ·
淺	海養	殖		文 蛤			62		139		65
				牡 蠣			254		78		400

(八)水質評估

由各項調查分析結果,發現該區域水質之重金屬(Cu、Cd、Zn、Pb、Hg)於安全濃度範圍內;營養鹽(亞硝酸鹽、磷酸鹽、矽酸鹽)、解離氨(Ammonium)與懸浮固體等超過水產用水安全濃度;酚類與總油脂含量達異臭味標準以上,對水產物商品價值是值得重視。經研析該區域,以新鹽灘區第一工區西海岸之水質較佳,屬於乙類海域水質標準;新鹽灘區第一、二工區水閘口,新鹽灘區北水閘口,第一號橋及青鯤鯓與北門漁港,屬略低於乙類海域水質標準;漚汪與山子脚大排水溝,以及其與北航道交會處,屬於丙類海域水質標準;臨近將軍溪下游之將軍漁港水體之水質最差,其溶氧量稀少,磷酸鹽、矽酸鹽、解離氨與酚類含量高,已達嚴重汚染程度。

該地區水質變惡與臨近將軍溪下游有關,將來新建立之漁港航道出海口,位於水質較佳之新鹽灘區第一區西海岸,與原航道雖互不相通,但是冬天吹東北季風與夏天吹西南風時,可能使港內之油脂與廢棄物漂流至西南航道及北航道出入口,而進入航道內,引用此航道之海水漁塭,可能因而受影響,所以未來建港後,必須妥善管理港區之廢棄物與油脂,避免增加汚染源,而此地域水質環境之改善,必須先整治將軍溪汚染源,才能獲得充分之改善。

謝辭

本調查研究計畫蒙臺灣漁業技術顧問社提供經費,分所同仁葉信利先生之協助,得以完成,特此致謝。

參考 文獻

APHA, AWWA, WPCF (1981). Standard methods for the examination of water and wastewater, 15th edition, American public health association.

EPA (1983). Methods of chemical analysis of water and wastes EPA-600/4-79-020. United States environmental protection agency.

Hung, T. C., J. C. Chen, L. P. Lin and K. L. Fan. (1981). Water pollution study on shellfish cultivating area of western coast of Taiwan. Inst. Oceanogr., National Taiwan University, Spec. Publ. 31: 1-30.

Hung, T.C., J.C. Chen, L.P. Lin and N.K. Liang. (1975). Pollution studies on shellfish cultivating area of Taiwan western coast. Inst. Oceanogr., National Taiwan University, Spec. Publ. 6: 1-60.

Jeng, S. S. (1975). Studies on mass mortalities of cultural shellfishes along the south western coast of Taiwan, JCRR Fish. Rept. 18: 1-48.

Perkin-Elmer. (1971). Analytical methods for atomic absorption spectrophotometry, EN-I.

日本水產資源保護協會 (1972)。水產用水基準。

日本海洋學會編 (1979)。海洋環境調査法、東京,恒星社厚生閣。

張金豐,陳弘成 (1980)。海洋汚染對蟳苗之毒性研究。文化大學,海洋彙刋,26: 47-58。

篩月娥、蔡萬生、胡興華 (1981)。澎湖沿岸營養鹽及水質調査研究。水試所報告,33: 305-315。

臺灣省水汚染防治所 (1981)。河川水質標準及放流水標準。

陳建初 (1981)。水質分析。九大圖書公司。

行政院環境保護署 (1985)。水質檢驗法第一篇。

行政院衞生署 (1985)。臺灣沿海地區水質標準。

蔡萬生,胡興華(1985)。澎湖內灣環境調查。國科會生物科學研究中心專刋。14: 117-198。

陳一鳴、凌文通、陳萬生 (1987)。 墾丁國家公園海域環境之週年變化。 國科會,海洋科學學術研討會論文集, 10: 41-48。

林世榮 (1988)。有機溶劑對虱目魚、草蝦、文蛤之毒性及對生長之影響,水試所報告,44: 239-251。

臺灣省漁業局 (1988)。中華民國臺灣地區漁業年報。72-104。

譚天錫,曾萬年(1988)。澎湖縣湖西鄉附近海域生態調査。臺灣大學,漁業生物試驗所。

行政院環境保護署(1988)。臺灣西部養殖區水質監測與生物體重金屬含量調査研究。環境保護專案研究叢書(4)。

行政院環境保護署 (1988)。水質保護政策與執行評析。環境政策分析叢書 (5)。

行政院環境保護署 (1988)。海洋環境保護政策之研析。環保政策分析叢書 (6)。