無具介類累積水中殘留農藥 及其釋放之研究

摘 要

吳郭魚和泥鳅對丁基拉草的TLm值,分別為 0.88 與 0.89 ppm 吳 郭魚和泥鳅對殺丹的TLm值,分別為 1.99 與 2.54 ppm;甲氧基護谷 之水溶解度只有 0.3 ppm(15℃)在飽和狀況下,48 小時內對吳郭魚 、蜆和泥鮲並不產生致死效果。

吳郭魚、泥穌及蜆對水中殘留農藥的吸收累積量,隨農藥種類及濃度而不同;但在30天實驗期間,魚貝類體內農藥濃度變化之趨勢大致相似;初始魚貝類體內農藥濃度快速上升,在第3~5天後達到最高峰,然後隨時間漸減;在三種水生生物中,以泥穌最易累積水中殘留農藥,而蜆則最不易累積水中殘留農藥;三種農藥中以甲氧基護谷最易在生物體內累積,而丁基拉草則最不易在生物體內累積。

鯉魚、吳郭魚、泥鰍及蜆在含農藥的水溶液生活三天後移入清水中,體內農藥濃度變化之趨勢大致相似:初始魚貝類體內農藥濃度在第05天內快速下降,而後下降速率減緩。

於彰化、雲林及宜蘭之沿海地區,設置採樣點,採取地表水,測定其中三種水田除草劑之殘留量:計彰化六點,雲林五點及宜蘭七點;分析結果丁基拉草爲<0.02~10.8 ppb,殺丹爲<1.2~6.0 ppb,甲氧基護谷爲<0.02~1.45 ppb,可知此研究區域內地表水中之三種除草劑殘留量,對魚類應不致造成急毒性危害。

一、前言

台灣地處熱帶及亞熱帶地區,高溫多雨,病蟲草害特多,對於農業生產威脅極大,爲了確保農業的生產,農藥的使用成爲必要的手段。由於農藥在施用後僅有少量的藥劑能達到目的物而產生預期的效果,其餘大部分則散入生態環境中。其移轉變化的可能途徑爲:一、被植物吸收與代謝,二、光分解,三、揮散進入大氣中,四、隨表面逕流沖刷損失,五、被土壤吸附,六、生物分解,七、淋洗,八、化學分解等(8)。所以在農藥使用安全的顧慮下,除了考慮農業的直接殺病蟲草害效果外,另一極重要的課題即是探討其對非目的生物的作用。

本省農耕爲集約制度,單位面積之農藥施用量偏高,且種類繁多。 此等農藥因逕流或排水流入至溝渠河川或魚池及天然水域中,造成水產 物死亡之事件已屢見不鮮。另外,養殖魚蝦貝類或天然水產魚貝類亦可 能會有吸收累積農藥的現象(2,6)。本省耕地60%爲水稻田,稻 田之排放水爲魚池河川中農藥來源之一。爲確保水產物不受稻田使用農 藥之爲害,稻田中推廣之農藥的魚毒性及生物累積性應詳加探討。

本研究之主要目的,即在探討台灣水稻田常用農藥之魚毒性,並希 望據以訂定各種農藥在水中之最高容許量,並其是否在魚體內累積的情 形。台灣水稻田中最常用的除草劑爲丁基拉草,其次爲殺丹(4),再其次 爲甲氧基護谷,故本期研究首先選擇用以進行研究。

丁基拉草的化學名稱為 N-(Butoxymethy1)-2-chloro-2,6-Diethylacetanilide,屬於 α-氨基酸銨類之萌前除草劑,自1971年在台灣被推廣使用,係目前在台灣使用最普遍之水田除草劑。陳(1986)(7)研究丁基拉草在本省南北兩地水田中分解的情形,結果發現在每公頃30公斤5%粒劑用量下,經32天後田水中及土壤中仍有丁基拉草殘留。

殺丹的化學名稱爲 S-(4-chlorobenzyl)-N, N-diethylthi-

ocarbamate,為氨基甲酸脂系的除草劑,具選擇性,對一年生雜草有效,在日本廣被使用,據估計約有60%的水稻田使用此除草劑(5,16)。本省亦於1971年推廣使用於水田雜草防除。Yusa及Ishikawa(1977)(16)研究殺丹在田水中的消失,發現每公頃水田中施用6Kg有效成份的劑量後,田水中殺丹濃度為1.5 ppm,五天後減低至半量,而經三十天後,田水中仍可測得0.1 ppm。另外農田灌排系統在施用殺丹前,水樣中測不到殺丹的存在,施藥後排水可測到49 ppb,6.4 天後濃度減半。李及康(1979)(1)以溫室試驗田模擬水稻生態系研究殺丹之殘留,認爲其殘留時間長,若在連續使用多次後,對水稻及裡作作物可能會造成不良的影響。陳(1986)(7)研究殺丹在本省南北兩地田水中的殘留,指出殺丹在田水中的殘留高,毒性亦高,故可能對水生物或其他環境的影響甚大,應小心加以防範。

甲氧基護谷的化學名稱爲 2,4-dichlorophyl-3'-methoxy-4'-nitrophenyl ether,屬於聯苯醚系(diphenyl ether)的水田雜草萌前、萌後初期除草劑,對水稻及裨草而言並非本質上的選擇性,而是生育期不同而產生耐藥性之差異的關係,本劑不僅對一年生雜草,對多年生雜草之發生始期亦有抑制效果。陳(1986)(7)研究甲氧基護谷在本省南北兩地田水中的殘留情形,結果發現在每公頃 30公斤 7% 粒劑用量下,經 32 天後田水中及土壤中仍有甲氧基護谷殘留。

李及陳(1981)(3)研究台灣常用農藥對兩種魚類的毒性,發現丁基拉草對大肚魚及紅色吳郭魚的危險度分別為 0.40 及 0.66;殺丹對大肚魚及紅色吳郭魚的危險度分別為 1.14 及 0.80。李氏等建議丁基拉草及殺丹的使用宜特別小心。本研究的目的為確定農藥對魚的急毒性,了解魚體吸收累積水中殘留農藥的程度及情形,以作為農藥使用安全的參考,及水產食物品值的保證。

二、材料與方法

一材料

1. 除草劑

本研究採用殺丹、甲氧基護谷和丁基拉草三種除草劑,測定魚類對農藥的「中間忍受限度」(Medium Tolerance Limit) TLm值的急毒性實驗,及魚類累積水中殘留農藥試驗所使用者,分別爲純度爲93%的工業級殺丹和純度爲90%的工業級丁基拉草及85%的甲氧基護谷。

分析使用的除草劑標準品,殺丹為純度 100 %的純品,由台灣 庵原公司提供;丁基拉草為純度為 99.2 %的純品,由美國孟山都 公司提供。其一般理化性質列於表一(14)。

2. 有機溶劑

萃取魚貝體內農藥所使用的n-Hexane 和 Acetonitrile, 同為皓峰公司 Ultra pure 級產品。定量及定性分析用的n-Hexane 則為皓峰公司 L.C. 級的純品。

3. 儀器

用以定量及定性分析除草劑者,為 Shimadzu GC-7A 附有電子捕獲式偵測器 ECD(Electron Capture Detector),以 Ni-63 為放射源。

4.試驗用水

農藥對水生生物的毒性,依水質、pH 值(13)、水溫(12, 13)及溶氧量(13)而異。本研究之魚類急毒性實驗,及魚類累積水中殘留農藥試驗所使用的自來水,爲先經靜置一天以上,待氯氣消失後方才取用。

5.試驗用魚貝

表一 三種除草劑之一般物理化學性質

 項		目	1	基	拉	草	殺	丹	甲	氧 基	護 1	谷
 英文	(普通	名	F	uta	ch1	or	Ben	thiocarb	Chlo	metho	xyni]	,X-52
化	學	名	2-ch	lore	o-2'	thyl)- ,6'- nilide	•	chlorobenzyl) diethylthio- amate	-3'-	dichlo metho	оху-	4'-
結	構	式 《		N<	H ₂ O(C1		O C2H	5 C1—∢	S ^c	1 0-<	OCH ₃
分	子	式	C 17	H ₂₆ (C1 NO	2 .	C 12 H	16 C1NOS		С13 Н9	C12N	04
分	子	量		311.	.9			257.8		384	.0	
沸		點	156 °C	(0.	5 mmF	Ig)	126-129	9.C (0°008 mmH	g)	260) °C	
溶		點	低	於 5 *	c					113-	114 ℃	;
溶	解	度	, benz	¢et ene	her,	4°C), acetonohol,, hexane	e 可溶加 etha	30 ppm(20 ℃ % acetone, nol,xylene	可礼	:0.3 容於honzene	exan	
急	性 毒	性	LD 50	: 330	0mg	/Kg	LD 50:1	903 mg/Kg	LD50	:3300	0mg/	/Kg

農藥對水生生物的危害狀況,常因供試魚的種類(3,13)、大小(13)、品種而有差異。本研究所使用的鯉魚 Carp(Cyprinus carpio)、吳郭魚(Tilapia)、泥鰍(Loach)和蜆(Freshwater Clam)均得自於台灣省水產試驗所竹北分所。鯉魚、吳郭魚體長約3.5-4.0公分,泥鰍體長約5.0-6.5公分,蜆之直徑約爲1.3-2.0公分。在實驗進行前,供試用魚貝至少要在實驗室內馴化一週以上(3,15)。在馴化期間日應餵食一次(15),但在進入實驗前兩日停止餵食(3,15)。每一次獨立的毒性評估試驗所使用的魚,必須同時取自於同一來源(15)。魚樣在放入容器前必須沒有病徵或不正常的表現及行爲。

6.水族箱

魚毒試驗所用的容器必須爲玻璃製品,而且可盛十公升以上的試驗溶液(15)。同一系列的實驗應該使用同一式樣的容器(15)。本研究採用容量爲50公升的玻璃水族箱爲試驗槽,其規格爲,長60公分,寬30公分,高35公分。

仁)方法

1.生物檢定法

魚類對農藥的TLm值測定,採用止水式生物試驗。係依據Nishiuchi(15)及Doudoroff(9)的方法。試驗魚數爲20尾/50公升水。每公升水所容魚重都在一克以下(3)。首先作預備試驗,求出約略的上限(百分之百致死濃度)和約略的下限(百分之百存活濃度)。求出約略的上限及下限後,即進入正式試驗,在所獲得的上限及下限之間,分成三至四種濃度進行試驗。

首先將農藥配製於Acetone中,再加入試驗用水中,溶劑以不超過0.067%爲準(3)。對照組僅加溶劑,待各濃度處理和對照組之試驗用水攪拌均勻後,將魚放入,記錄48小時魚之死亡

數目,於實驗過程中,隨時注意魚之死亡情形,發現死亡魚後卽刻將其取出,以免汚染試驗用水。試驗進行時水溫爲 20-25 ℃(公定標準爲 20-28 ℃)(3),對照組死亡率若超過 20 %時,則需重新進行試驗(15)。

魚的死亡率和農藥濃度的對數值,作成線性相關,可求出魚類對農藥的TLm值。

2. 魚貝類累積水中殘留農藥試驗

配製約爲TLm值百分之一和千分之一濃度的農藥水溶液, 放入試驗魚於其中生活,經不同時間後分別取樣分析魚體內農藥 的含量,並計算生物濃縮指數。

實驗期間爲防止因揮發、光分解等因子造成農藥濃度的大幅改變,故每48小時換新水溶液一次,以維持農藥濃度。

3. 魚貝類體內累積殘留農藥釋放試驗

配製約為 TLm 值百分之一和千分之一濃度的農藥水溶液, 放入試驗魚於其中生活三天後移入清水中,經不同時間後分別取 樣分析魚體內農藥的含量。

4. 魚貝體內農藥的抽出與淨化

魚貝體內農藥的抽出,以 n-Hexane 和 Acetonitrile 兩種不同極性的溶劑混合抽出,活魚樣品採樣後,先以大量清水沖洗一分鐘,重復沖洗三次可除去絕大部分體表附著的農藥,洗淨的樣品以衞生紙拭乾後,冷凍儲存待全部樣品採完後一起分析。

取約10克的魚體(蜆取肉約5克)加25ml的n-Hexane 及25ml的Acetonitrile,用均質機以3000rpm的轉速打碎 30秒,然後抽氣過濾,殘滓重復加溶劑打碎過濾,重復萃取三次 ,收集Acetonitrile層濾液,n-Hexane層另以150ml acetonitrile分三次振盪萃取,以上萃取方法可將絕大部分的脂肪 分離,防止GC分析的干擾。

收集所有的acetonitrile 萃取液,經50℃減壓濃縮後以管柱層析淨化,淨化管為內徑0.8cm的玻璃製品,填充以6 cm的三氧化二鋁(Aluminiumoxid 90 MERCK),管柱以150ml之n-Hexane 飽和的Acetonitrile 為洗出液,收集的洗出液經減壓濃縮至乾後,以n-Hexane 定量為10ml以備GC分析。5.氣相層析儀分析

本實驗使用之GC 管柱爲長度 200 cm內徑 2mm的玻璃管柱,填充物 3 % OV-1 固著於 80-100 me sh 固體支持物 Chromosorb Q上,氣體擔體爲氮氣,流速爲 30 u1/min,丁基拉草的分析溫度條件爲:注入孔 250 ℃、管柱 230 ℃、偵測器 250 ℃,殺丹的分析溫度條件爲:注入孔 250 ℃、管柱 190 ℃、偵測器 250 ℃,甲氧基護谷分析時,注入孔 250 ℃、管柱 220 ℃、偵測器 250 ℃。6.囘收率

取新鮮魚體約10g(蜆取肉約5克),分別加入4.5 ug的丁基拉草、甲氧基護谷和殺丹,依前述萃取方法處理,所得平均囘收率,丁基拉草一鯉魚爲91.31%;殺丹一鯉魚爲87.92%;丁基拉草一吳郭魚爲87.65%;殺丹一吳郭魚爲77.64%;丁基拉草一泥鰍爲92.31%;殺丹一泥鰍爲90.06%;丁基拉草一蜆爲89.62%;殺丹一蜆爲92.43%;甲氧基護谷一鯉魚爲96.31;甲氧基護谷一吳郭魚爲93.86%;甲氧基護谷一泥鰍爲91.73%;甲氧基護谷一蜆爲94.28%。

三、結果與討論

─測試魚類對丁基拉草和殺丹的 TLm 值

工業廢水、有毒物質及農藥對魚類急毒性的表示方法,通常用

用TLm表示(3),TLm之測定是將供試魚類,放於各種濃度的毒物或藥物溶液中,在一定時間內計算供試魚類殘存50%的濃度,一般所定的時間爲24小時、48小時及96小時。日本農林省的標準爲48小時(3),本研究8小時爲標準測定丁基拉草、甲氧基護谷和殺丹的TLm值。

Doudoroff(9)提倡以作圖法求出 TLm 值,本研究依仿其法:

吳郭魚和泥鳅對丁基拉草的 TLm 值,如表 2 及表 3 所示,分别 爲 0.88 ppm 與 0.89 ppm,吳郭魚和泥鳅對殺丹的 TLm 值如表 5 及表 6 所示,分別爲 1.99 ppm 與 2.54 ppm,甲氧基護谷之水溶解度只有 0.3 ppm(15 C) 在飽和狀況下, 48 小時內對吳郭魚、蜆和泥鳅並不產生致死效果(表 8 \times 9),農藥對蜆之急毒性,似乎不適宜以 Doudoroff的方法表達(表 4 \times 7)。

二魚類累積水中殘留農藥試驗

在農藥推廣使用前考慮農藥之安全問題,除應考慮其對人畜之 毒性外,更應考慮其對自然食物鏈鎖中各成員之影響,如魚類、植 物等,以免因使用農藥而干擾生態環境及人類食物來源,爲探討魚 類是否可能會有吸收農藥並經生物濃縮之現象,採用吳郭魚、蜆和 泥鳅進行試驗。

表 A 1 和圖 A 1 為吳郭魚在 0.01 ppm 和 0.001 ppm 的丁基拉草水溶液中。生活不同時間後魚體內丁基拉草濃度變化的情形。在經一天後魚體即分別累積了水中濃度 2 倍和 6 倍左右的丁基拉草,三天後達到最高,分別為 2.4 倍和 6.7 倍,其後魚體內丁基拉草濃度隨時間遞減,至 30 天後分別只餘水中濃度的 1.7 倍和 3.9 倍。

表A 2 和圖 A 2 為泥鳅在 0.01 ppm 和 0.001 ppm 的丁基拉草水溶液中,生活不同時間後魚體內丁基拉草濃度變化情形,在經一天後魚體即分別累積了水中濃度 2.5 倍和 6.3 倍左右的丁基拉草,三

表2. 吳郭魚對丁基拉草的TLm值(48hr)

丁基拉草濃度 ppm	log(丁基拉草濃度 ppm)	平均死亡率%
0.0		0
* 0.5	-0.3010	0
1.0	0.0000	60
# 1.5	0.1761	100
2.8	0.3010	100

*:百分之百存活濃度;#:百分之百致死濃度

Y = 208.6049 X + 62.0159 R SQUARD = 0.9989

TLm = 0.88 ppm

表3 泥鳅對丁基拉草的TLm值(48hr)

丁基拉草濃度 ppm	log(丁基拉草濃度 ppm)	平均死亡率%
0.0		0
0.5	-0.3010	30
1.0	0.0000	40
1.5	0.1761	.80
2.0	0.3010	90

Y = 105.5463 X + 55.3536 R SQUARD = 0.8762

TLm = 0.89 ppm

表 4 丁基拉草對蜆之急毒性

丁基拉草濃度				
ppm	24 hr	48 hr	96 hr	
0.0	0	0	0	
0.5	0	0	0	
1.0	0	0	0	
2.0	0	0	0	
5.0	5	5	5	
10	0	10	10	
15	0	10	20	
20	0	10	20	

表 5 吳郭魚對殺丹的 TLm 値(48 hr)

殺丹濃度 ppm	log(殺丹濃度 ppm)	平均死亡率%
0.0		0
2.0	0.3010	50
3.0	0.4771	80
# 4.0	0.6021	100
5.0	0.6990	100

#:百分之百致死濃度

Y: 166.3766 X - 0.1217 R SQUARD = 0.9998

TLm = 1.99 ppm

表 6 泥鳅對殺丹的 TLm 值(48 hr)

殺丹濃度 ppm	log(殺丹濃度 ppm)	平均死亡率%
0.0		0
2.0	0.3010	30
3.0	0.4771	70
# 4.0	0.6021	100
5.0	0.6990	100

#:百分之百致死濃度

Y = 232.1818 X - 40.1533 R SQUARD = 0.9998

TLm = 2.45 ppm

表 7 殺丹對蜆之急毒性

	平均死亡率%				
p pm	24 hr	48 hr	96 hr		
0.0	0	0	0		
0.5	0	0	0		
1.0	0	0	0		
2.0	0	0	0		
5.0	0	5	5		
10	0	0	0		
15	0	10	30		
20	0	0	30		

表 8 克草對吳郭魚之急毒性

	平均死亡率第	%
24 hr	48 hr	96 hr
0	0	0
0	0	0
0	0	0
0	0	0
• 0	0	10
	0 0 0	0 0 0 0 0 0 0 0

表 9 克草對泥鳅之急毒性

克草濃度	Z	下均死亡率%	
ppm	24 hr	48 hr	96 hr
0.00	0	Ó	0
0.05	0	0	0
0.10	0	0	0
0.20	0	0	0
0.50	0	0	10

天後到達最高,分別爲 2.7 倍和 7 倍,其後魚體內丁基拉草濃度隨時間遞減,至 30 天後分別只餘水中濃度的 1.7 倍和 3.7 倍。

表 A 3 和圖 A 3 爲蜆在 0.1 ppm 和 0.01 ppm 的丁基拉草水溶液中,生活不同時間後魚體內丁基拉草濃度變化的情形。在經 0.5 天後 蜆體即分別累積了水中濃度 0.3 倍和 3.4 倍左右的丁基拉草,兩天後 達到最高,分別爲 1.1 倍和 6 倍。其後蜆體內丁基拉草濃度隨時間遞減,至 30 天後分別只餘水中濃度的 0.2 倍和 2 倍。

表A4和圖A4爲吳郭魚在0.02ppm和0.002ppm的殺丹水溶液中,生活不同時間後魚體內殺丹濃度變化的情形。在經一天後魚體即分別累積了水中濃度14.2倍和7.4倍左右的殺丹,三天後達到最高,分別爲24.4倍和10.1倍,其後魚體內殺丹濃度隨時間遞減,至30天後分別只餘水中濃度的1.9倍和2.4倍。

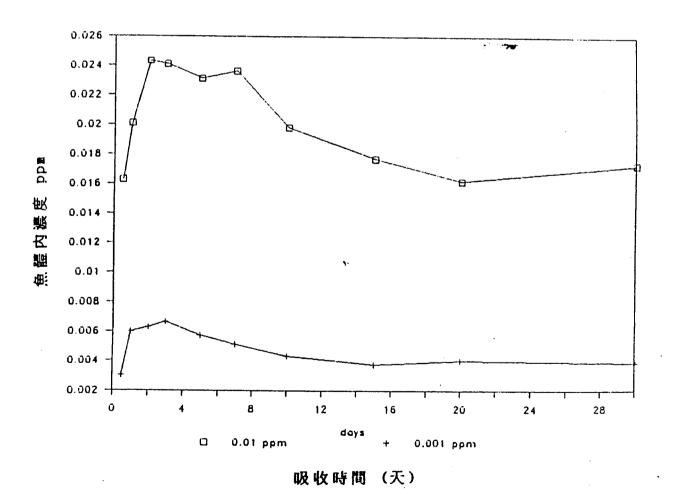
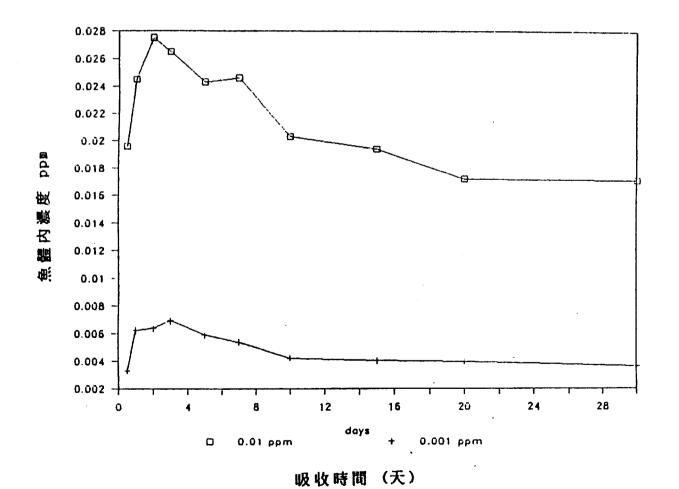

表 A 5 和圖 A 5 為泥鳅在 0.02 ppm 和 0.002 ppm 的殺丹水溶液中,生活不同時間後魚體內殺丹濃度變化的情形,在經一天後魚體即分別累積了水中濃度 25.8 倍和 9.6 倍左右的殺丹,三天後達到最高,分別為 30.6 倍和 13.6 倍,其後魚體內殺丹濃度隨時間遞減,至30天後分別只餘水中濃度的 3 倍和 2 倍。

表 A 6 和圖 A 6 爲蜆在 0.2 ppm 和 0.02 ppm 的殺丹水溶液中,生活不同時間後蜆體內殺丹濃度變化的情形,在經一天後蜆體即分別累積了水中濃度 1.5 倍和 4.6 倍左右的殺丹,三天後達到最高,分別爲 2.9 倍和 7.2 倍,其後魚體內殺丹濃度隨時間遞減,至 3 0 天後分別只餘水中濃度的 0.4 倍和 1 倍。

表A7和圖A7為吳郭魚在0.03 ppm的甲氧基護谷水溶液中, 生活不同時間後魚體內甲氧基護谷濃度變化的情形,在經一天後魚體 即累積了水中濃度60.3倍的甲氧基護谷,15天後達到最高106倍, 其後魚體內甲氧基護谷濃度隨時間遞減,至30天後累積係數只餘92

表 A 1 吳郭魚對丁基拉草的吸收累積


吸收時間	(0.01 ppr	n)	(0.001 ppm)	
(天)	魚體內濃度 ppm		魚體內濃度 ppm	累積係數
0.5	0.0163	1.63	0.0030	3.03
1	0.0201	2.01	0.0060	6.02
2	0.0243	2.43	0.0063	6.31
3	0.0241	2.41	0.0067	6.66
5	0.0231	2.31	0.0057	5.73
7	0.0236	2.36	0.0051	5.14
10	0.0198	1.98	0.0043	4.32
15	0.0177	1.77	0.0038	3.75
20	0.0162	1,62	0.0040	4.01
30	0.0173	1.73	0.0039	3.85

圖A1 吳郭魚對丁基拉草的吸收累積

表 A 2 泥鳅對丁基拉草的吸收累積

吸收時間	(0.01 pr	om)	(0.001 ppm)		
(天)	魚體內濃度 ppm	累積係數	魚體內濃度 ppm	累積係數	
0.5	0.0196	1.96	0.00331	3.31	
1	0.0245	2.45	0.00628	6.28	
2	0.0275	2.75	0.00641	6.41	
3	0.0265	2 .6 5	0.00659	6.95	
5	0.0243	2.43	0.00593	5.93	
7	0.0246	2.46	0.00541	5.41	
10	0.0203	2.03	0.00423	4.23	
15	0.0194	1.94	0.00404	4.04	
20	0.0172	1.72	0.00397	3.97	
30	0.0171	1.71	0.00365	3.65	

圖A2 泥鳅對丁基拉草的吸收累積

表A3 蜆對丁基拉草的吸收累積

吸收時間	(0.1 pp	m)	(0.01 pr	om)
(天)	蜆體內濃度 ppm	累積係數	蜆體內濃度 ppm	累積係數
0.5	0.028	0.28	0.0336	3.36
1	0.094	0.94	0.0504	5.04
2	0.112	1.12	0.0594	5.94
3	0.104	1.04	0.0603	6.03
5	0.087	0.87	0.0543	5.43
7	0.062	0.62	0.0564	5.64
10	0.051	0.51	0.0382	3.82
15	0.041	0.41	0.0369	3.69
20	0.033	0.33	0.0187	1.87
30	0.021	0.21	0.0194	1.94

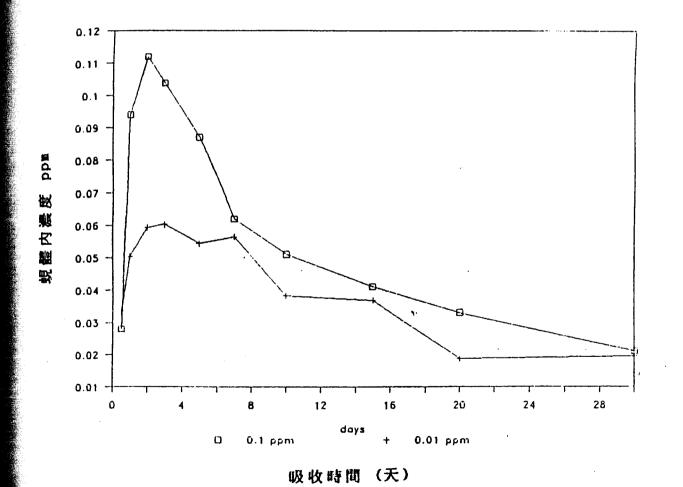
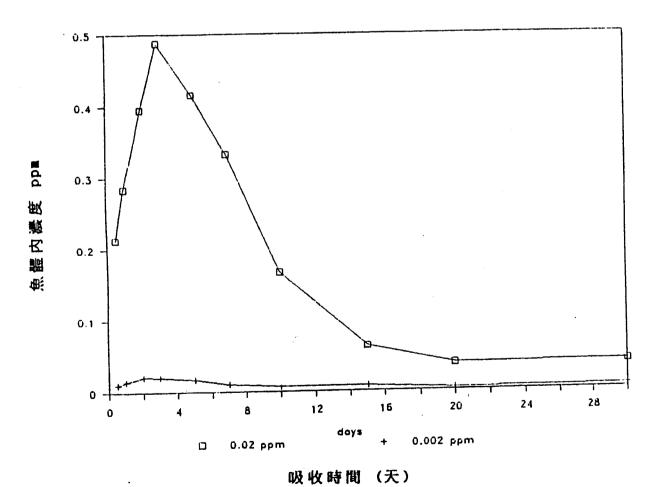
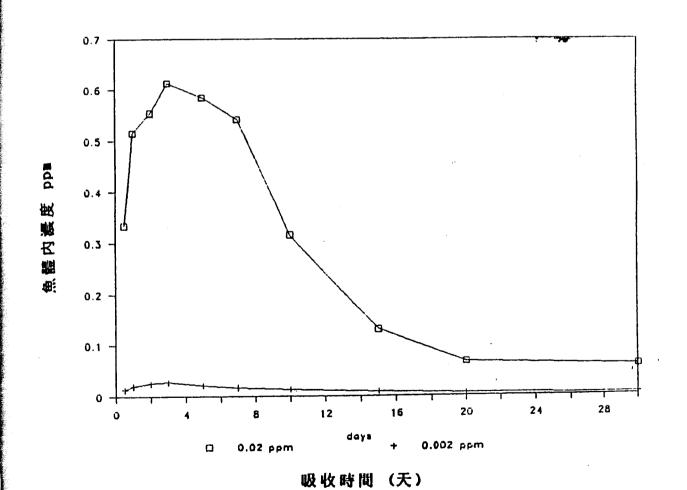
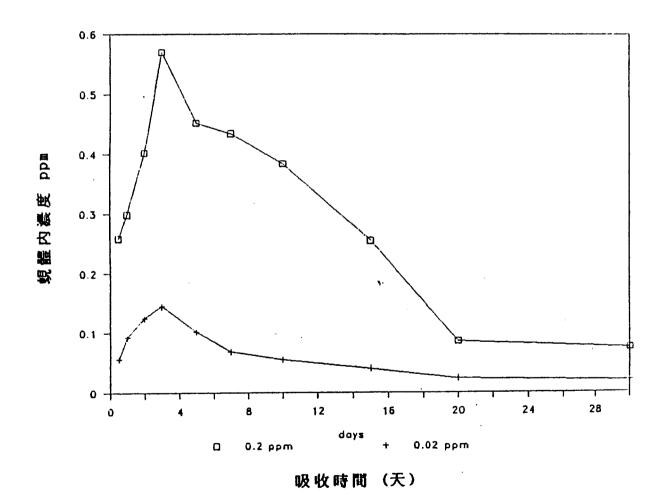



圖 A 3 蜆對丁基拉草的吸收累積

表 A 4 吳郭魚對殺丹的吸收累積

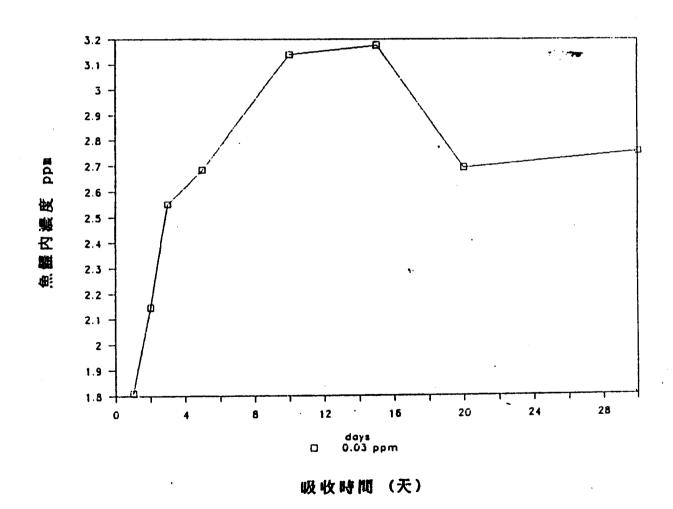

吸收時間	(0,02 p	om)	(0.002 ppm)
(天)	魚體內濃度 ppm	累積係數	魚體內濃度 ppm	累積係數
0.5	0.2130	10.65	0.01032	5.16
1	0.2836	14.18	0.01478	7.39
2	0.3946	19.73	0.02124	10.62
3	0.4874	24.37	0.02028	10.14
5	0.4152	20.76	0.01752	8.76
7	0.3324	16.62	0.01044	5.22
10	0.1672	8.36	0.00658	3.29
15	0.0628	3.14	0.00696	3.48
20	0.0376	1.88	0.00320	1.60
30	0.0386	1.93	0.00470	2.35

圖A4 吳郭魚對殺丹的吸收累積


表A5 泥鳅對殺丹的吸收累積

吸收時間	(0.02 pp	m)	(0.00/2 ppm)
(天)	魚體內濃度 ppm	累積係數	魚體內濃度 ppm	累積係數
0.5	0.3336	16.68	0.01258	6.29
1	0.5152	25.76	0.01918	9.59
$ar{2}$	0.5538	27.69	0.02506	12.53
3	0.6128	30.64	0.02712	13.56
5	0.5842	29.21	0.02122	10.61
7	0.5408	27.04	0.01634	8.17
10	0.3152	15.76	0.01288	6.44
15	0.1310	6.55	0.00874	4.37
20	0.1310	3.32	0.00466	2.33
30	0.0590	2.95	0.00416	2.08

圖A5 泥鳅對殼丹的吸收累積


吸收時間	(0.2 pr	om)	(0.02 ppm)	
(天)	蜆體內濃度 ppm	累積係數	蜆體內濃度 ppm	累積係數
0.5	0.258	1.29	0.0562	2.81
1	0.298	1.49	0.0924	4.62
2	0.402	2.01	0.1250	6.25
3	0.570	2.85	0.1448	7.24
5	0.452	2.26	0.1022	5.11
7	0.434	2.17	0.0688	3.44
10	0.384	1.92	0.0552	2.76
15	0.254	1.27	0.0402	2.01
20	0.086	0.43	0.0238	1.19
30	0.074	0.37	0.0192	0.96

圖A6 蜆對殺丹的吸收累積

表A7 吳郭魚對甲氧基護谷的吸收累積(0.03ppm)

吸收時間(天)	魚體內濃度ppm	累積係數
1	1.81	60.3
2	2.15	71.6
3	2.55	85.1
5	2.68	89.5
10	3.14	104.6
15	3.18	105.9
20	2.69	89.8
30	2.75	91.8

圖A7 吳郭魚對甲氧基護谷的吸收累積(0.03 ppm)

表A8和圖A8為泥鰍在0.03 ppm的甲氧基護谷水溶液中,生活不同時間後魚體內甲氧基護谷濃度變化的情形,在經一天後魚體即累積了水中濃度97.6倍的甲氧基護谷,7天後達到最高155倍,其後魚體內甲氧基護谷濃度隨時間遞減,至30天後累積係數只餘99。

表A 9 和圖 A 9 為蜆在 0.03 ppm 的甲氧基護谷水溶液中,生活不同時間後蜆體內甲氧基護谷濃度變化的情形。在經一天後蜆體即累積了水中濃度 24.6 倍的甲氧基護谷,15 天後達到最高 57.6 倍,其後無體內甲氧基護谷濃度隨時間遞減,至30天後累積係數只餘40.4

闫魚類體內累積殘留農藥釋放試驗

表 B 1 和圖 B 1 爲鯉魚在 0.01 ppm 和 0.001 ppm 的丁基拉草水溶液生活三天後移入清水中 3 0 天內魚體內丁基拉草濃度變化的情形。在經 5 天後魚體內丁基拉草濃度即分別由原來的 0.044 ppm 和 0.0067 ppm降至 0.014 ppm 和 0.0035 ppm ,至 30 天後則分別只餘 0.0016 ppm 和 0.0026 ppm。

表B2和圖B2為吳郭魚在0.01 ppm 和0.001 ppm的丁基拉草水溶液生活三天後移入清水中,30天內魚體內丁基拉草濃度變化的情形,在經10天後魚體內丁基拉草濃度即分別由原來的0.024 ppm 和0.0067 ppm降至0.0032 ppm 和0.0025 ppm,至30天後則分別只餘0.0018 ppm和0.00179 ppm。

表B 3 和圖 B 3 為泥鳅在 0.01 ppm 和 0.001 ppm 的丁基拉草水溶液生活三天後移入清水中,3 0天內魚體內丁基拉草濃度變化的情形,在經 10 天後魚體內丁基拉草濃度即分別由原來的 0.027 ppm 和 0.007 ppm 降至 0.0045 ppm 和 0.0028 ppm,至 30 天後則分別只餘

表A8 泥鳅對甲氧基護谷的吸收累積(0.03 ppm)

吸收時間(天)	魚體內濃度 ppm	累積係數
0.5	1.34	44.5
1	2.93	97.6
2	3.93	131.0
3	3.90	129.8
5	4.09	136.3
7	4.66	155.2
10	4.27	142.3
15	2.98	99.4
20	3.03	101.1
30	2.97	99.0

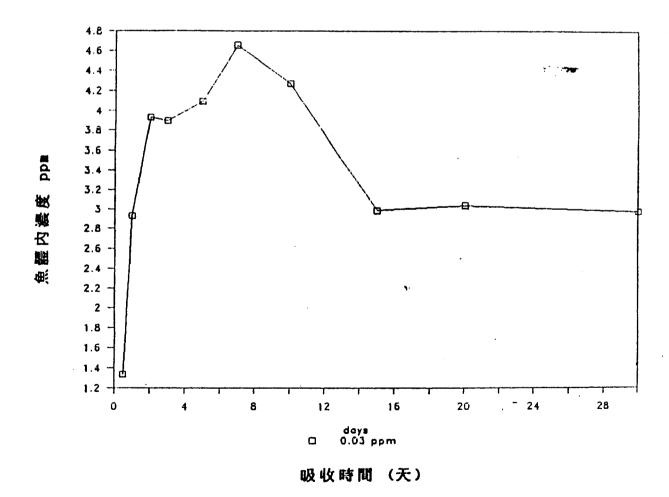
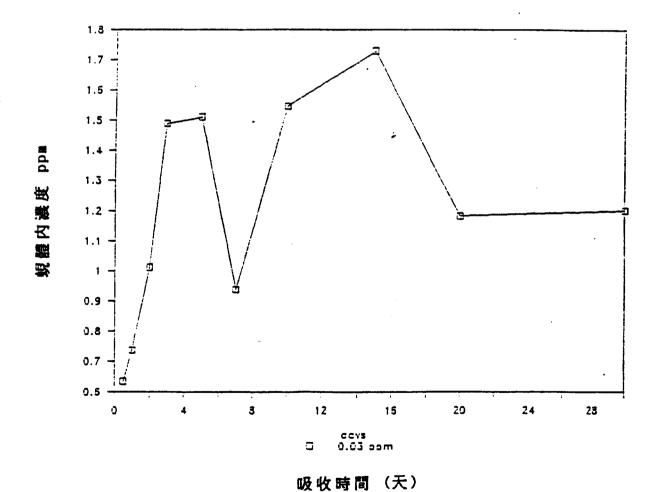



圖 A 8 泥鳅對甲氧基護谷的吸收累積 (0.03 ppm)

吸收時間(天)	蜆體內濃度 ppm	累積係數
0.5	0.63	21.2
1	0.74	24.6
2	1.01	33.7
3	1.49	49.6
5	1.51	50.4
7	0.94	31.3
10	1.55	51.6
15	1.73	57.6
20	1.18	39.4
30	1.20	40.0

圖A9 蜆對甲氧基護谷的吸收累積(0.03 ppm)

表B1 鯉魚體內殘留丁基拉草的釋放

時間	魚體內濃度 ppm	
(天)	(0.01 ppm)	$(0.001 \mathrm{ppm})$
0	0.0439	0.00671
0.5	0.0305	0.00616
1	0.0161	0.00553
2	0.0272	0.00506
3	0.0262	0.00468
5	0.0140	0.00351
10	0.0142	0.00356
15	0.0207	0.00287
20	0.0064	0.00205
30	0.0016	0.00260

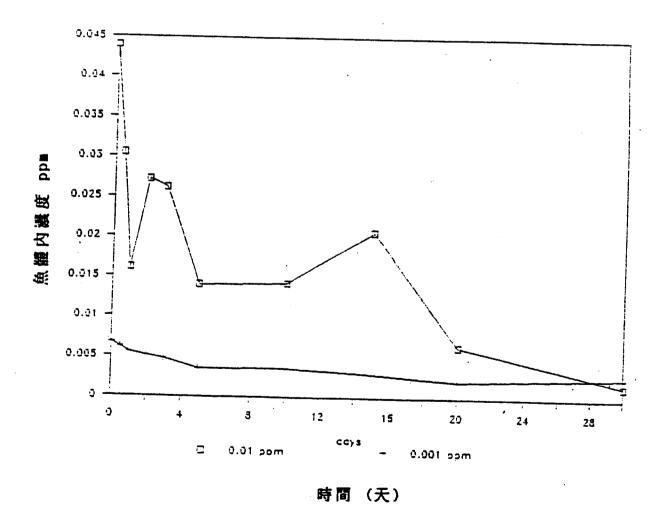


圖 B 1 鯉魚體內殘留丁基拉草的釋放

表 B 2 吳郭魚體內殘留丁基拉草的釋放

 時 間	————————— 魚體內濃度	f ppm
(天)		(0.001 ppm)
0,25	0.0253	0.00661
0, 5	0.0249	0.00668
1	0.0237	0.00603
2	0.0194	0.00584
. 3	0.0127	0.00499
5	0.0096	0.00379
7	0.0068	0.00318
10	0.0032	0.00254
15	0.0037	0.00263
20	0.0026	0.00177
30	0.0018	0.00179

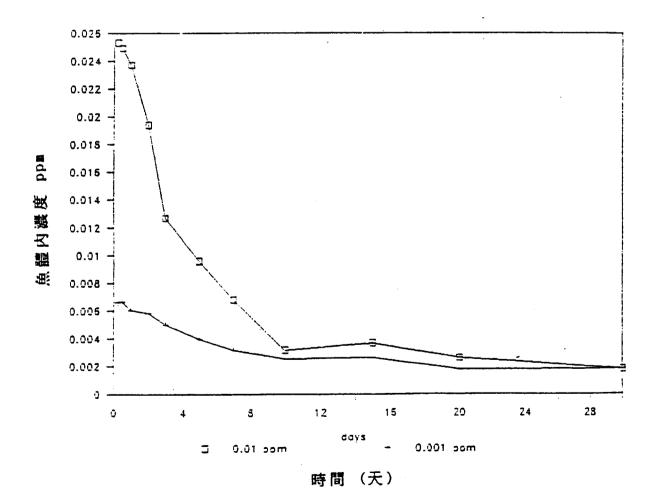


圖 B 2 吳郭魚體內殘留丁基拉草的釋放

表B3 泥鰍體內殘留丁基拉草的釋放

時間 魚體內濃度		農度 ppm
(天)	(0.01 ppm)	(0.001 ppm)
0,25	0.0287	0.00704
0.5	0.0268	0.00698
1	0.0244	0.00642
2	0.0203	0.00606
3	0.0137	0.00531
5	0.0104	0.00437
7	0.0081	0.00362
10	0.0045	0.00277
15	0.0041	0.00268
20	0.0037	0.00187
30	0.0031	0.00189

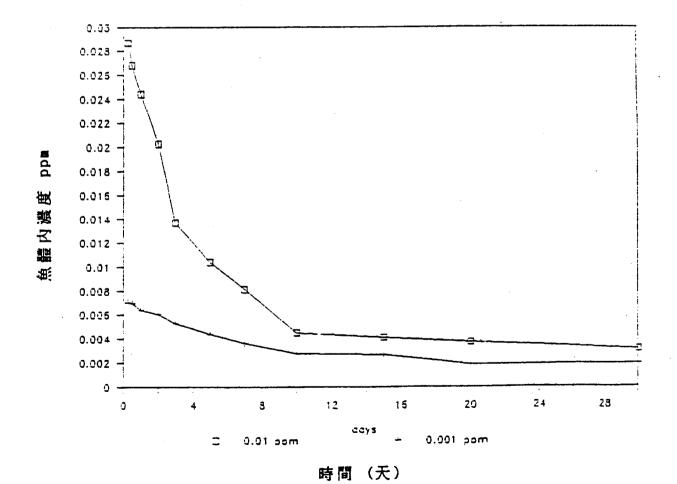


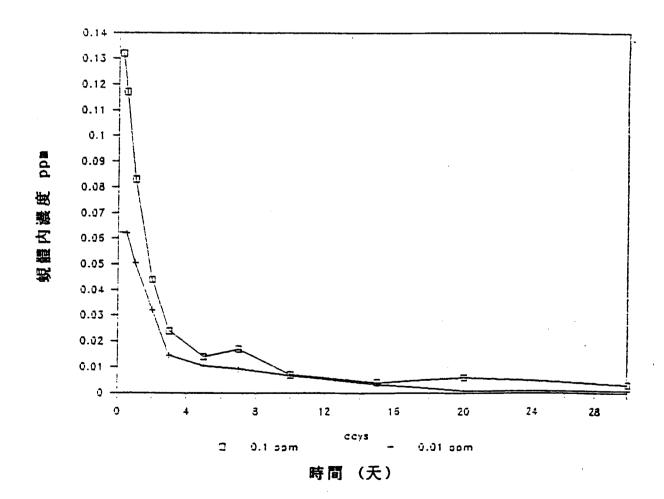
圖 B 3 泥鳅體內殘留丁基拉草的釋放

0.0031 ppm和 0.0019 ppm。

表 B 4 和圖 B 4 爲蜆在 0.1 ppm 和 0.01 ppm 的丁基拉草水溶液生活三天後移入清水中 3 0 天內蜆體內丁基拉草濃度變化的情形。在經 5 天後蜆體內丁基拉草濃度即分別由原來的 0.104 ppm 和 0.06 ppm 降至 0.014 ppm 和 0.01 ppm,至 30 天後則分別只餘 0.003 ppm 和 0.0009 ppm。

表C1和圖C1為鯉魚在0.02 ppm和0.002 ppm的殺丹水溶液生活三天後移入清水中,30天內魚體內殺丹濃度變化的情形,在經1天後魚體內殺丹濃度即分別由原來的1.264 ppm和0.024 ppm降至0.34 ppm和0.01 ppm,至30天後則分別只餘0.03 ppm和0.0046 ppm。

表C2和圖C2為吳郭魚在0.02 ppm 和0.002 ppm 的殺丹水溶液生活三天後移入清水中,30天內魚體內殺丹濃度變化的情形。在經5天後魚體內殺丹濃度即分別由原來的0.49 ppm和0.02 ppm 降至0.037 ppm和0.0041 ppm,至30天後則分別只餘0.0028 ppm和0.0006 ppm。


表 C 3 和圖 C 3 為泥鳅在 0.02 ppm 和 0.002 ppm 的 殺丹水溶液生活三天後移入清水中, 3 0 天內魚體內殺丹濃度即分別由原來的 0.61 ppm 和 0.027 ppm 降至 0.054 ppm 和 0.0045 ppm, 至 30 天後則分別只餘 0.0054 ppm 和 0.0009 ppm。

表C4和圖C4爲蜆在0.2 ppm和0.02 ppm的殺丹水溶液生活三天後移入清水中,30天內蜆體內殺丹濃度變化的情形,在經5天後蜆體內殺丹濃度即分別由原來的0.57 ppm和0.14 ppm降至0.126 ppm和0.019 ppm,至30天後則分別只餘0.018 ppm和0.0024 ppm。

表D 1和圖D 1 爲吳郭魚在 0.03 ppm的甲氧基護谷水溶液生活

表B4 蜆體內殘留丁基拉草的釋放

 時 間		
(天)		(0.01 ppm)
0.25	0.132	0.0624
0.5	0.117	0.0620
1	0.083	0.0504
2	0.044	0.0322
3	0.024	0.0145
5	0.014	0.0103
7	0.017	0.0092
10	0.007	0.0065
15	0.004	0.0032
20	0.006	0.0008
30	0.003	0.0009

表C1 鯉魚體內殘留殺丹的釋放

時間	魚體內濃度 ppm	
(天)	(0.02 ppm)	(0.002 ppm)
0	1.2628	0.02388
0.5	0.9692	0.01384
1	0.3444	0.01020
2	0.5462	0.01004
3	0.3848	0.00906
5	0.4460	0.00992
10	0.1508	0.00936
15	0.0834	0.00716
20	0.0448	0.00562
30	0.0332	0.00464

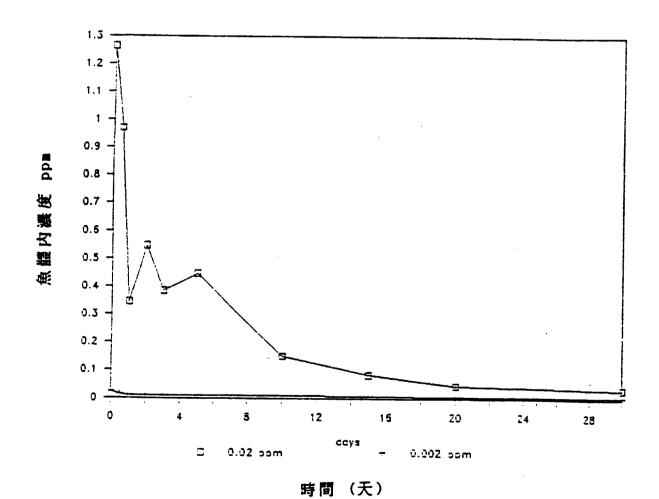


圖 C 1 鯉魚體內殘留殺丹的釋放

表 C 2 吳郭魚體內殘留殺丹的釋放

時間	魚體內濃度 ppm		
(天)	(0.02 ppm)	(0.002 ppm)	
0.25	0.4324	0.01968	
0.5	0.2998	0.01706	
1	0,2334	0.01814	
2	0.1668	0.01398	
3	0.0710	0.00616	
5	0.0374	0.00408	
10	0.0194	0.00182	
15	0.0122	0.00040	
20	0.0056	0.00026	
30	0.0028	0.00006	

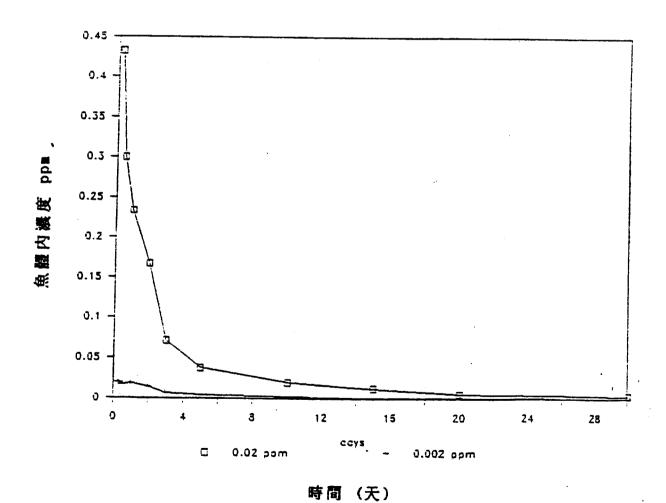


圖 C 2 吳郭魚體內殘留殺丹的釋放

表 C 3 泥鳅體內殘留殺丹的釋放

時間		要ppm
(天)	(0.02 ppm)	(0.002 ppm)
0.25	0.2846	0.01348
0.5	0.2676	0.01186
1	0.1942	0.00898
2	0.1626	0.00848
3	0.0542	0.00450
5	0.0318	0.00372
10	0.0130	0.00318
15	0.0086	0.00196
20	0.0074	0.00068
30	0.0054	0.00094

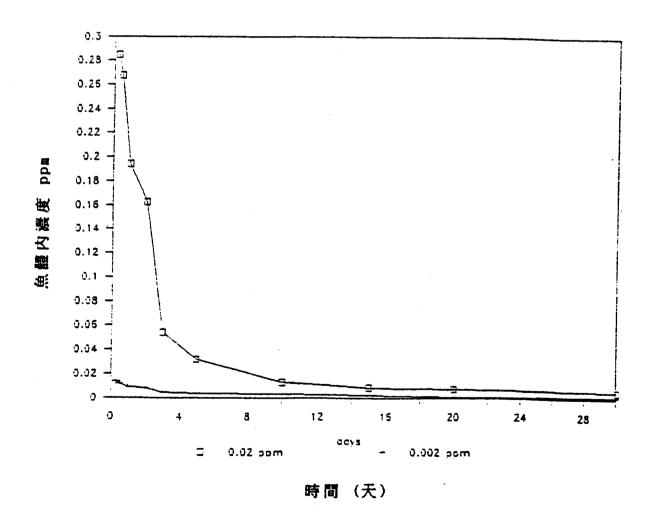


圖 C 3 泥鰍體內殘留殺丹的釋放

時間	蜆體科	勺濃度 ppm
(天)	(0.02 ppm)	(0.002ppm)
0.25	0.582	0.1304
0.5	0.406	0.0924
1	0.324	0.0838
2	0.314	0.0384
3	0.176	0.0254
5	0.126	0.0192
10	0.090	0.0086
15	0.052	0.0066
20	0.017	0.0064
30	0.018	0.0024

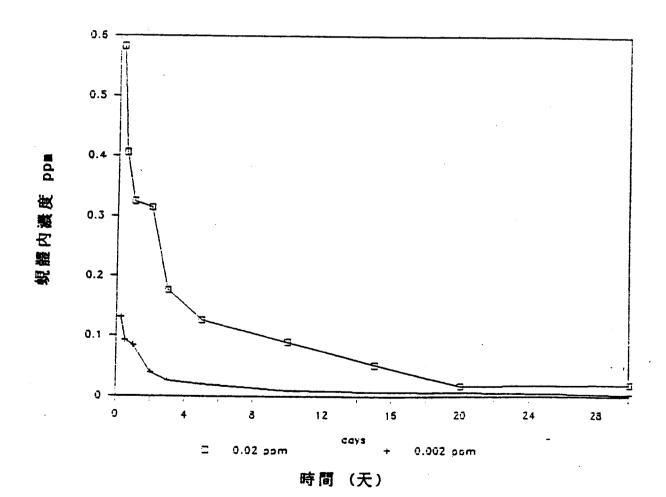


表 D 1 吳郭魚體內殘留甲氧基護谷的釋放(0.03 ppm)

時間(天)	魚體內濃度 ppm	累積係數
0.5	2.42	80.6
1	2.60	86.7
2	1.82	60.6
3	1.24	41.4
5	0.49	16.3
7	0.34	11.4
10	0.29	9.6
15	0.23	7.7
20	0.16	5.4
30	0.18	5.9

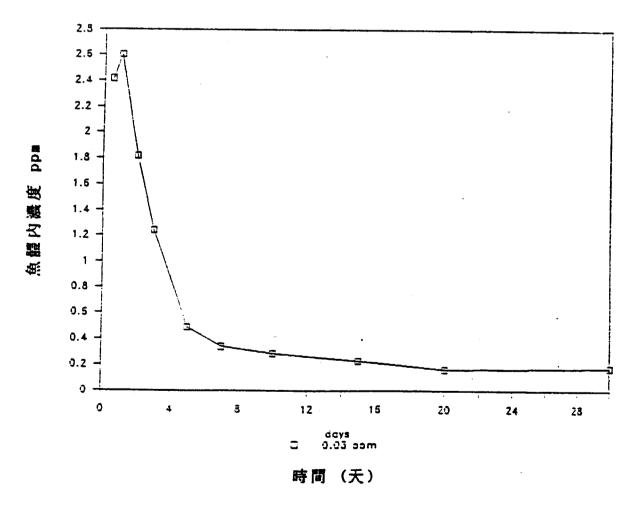
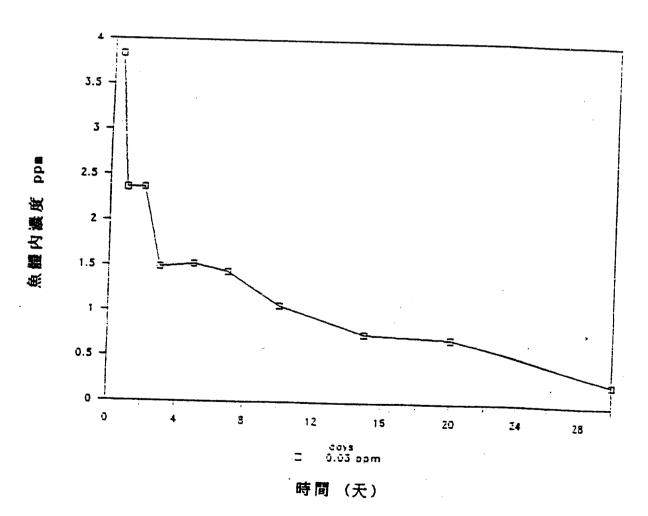


圖 D 1 吳郭魚體內殘留甲氧基護谷的釋放(0.03 ppm)

三天後移入清水中,30天內魚體內甲氧基護谷濃度變化的情形,在 經5天後魚體內甲氧基護谷濃度卽由原來的2.55 ppm降至0.49 ppm ,至30天後則只餘0.18 ppm。

表 D 2 和圖 D 2 為泥鰍在 0.03 ppm 的甲氧基護谷水溶液生活三天後移入清水中, 3 0 天內魚體內甲氧基護谷濃度變化的情形, 在經 3 天後魚體內甲氧基護谷濃度即由原來的 3.9 ppm 降至 1.52 ppm, 至 3 0 天後則只餘 0.25 ppm。


表D3和圖D3爲蜆在0.03 ppm的甲氧基護谷水溶液生活三天後移入清水中,30天內蜆體內甲氧基護谷濃度變化的情形,在經5天後蜆體內甲氧基護谷濃度卽由原來的1.49 ppm降至0.64 ppm,至30天後則只餘0.08 ppm。

四田間調査

於彰化、雲林及宜蘭之沿海地區,設置採樣點,採取地表水,測定其中三種水田除草劑之殘留量。採樣地點如表 E 1 及表 E 2 中所示:計彰化六點,雲林五點及宜蘭七點。分析結果如列表 E 3 至表 E 8 所示,地表水中三種除草劑之殘留量,丁基拉草爲 < 0.02-10.8 ppb,殺丹爲 < 1.2-6.0 ppb,甲氧基護谷爲 < 0.02-1.45 ppb,若與二級水產用水水質表準所列之 100 ppb 比較,目前地表水源中水田三種除草劑之殘量仍屬偏低。另與前述實驗室中 TLm 實驗結果比較,亦相差很多,故可知此研究區域內地表水中之三種除草劑殘留量,對魚類應不致造成急毒性危害。


表D2 泥鳅體內殘留甲氧基護谷的釋放(0.03ppm)

時 間 (天)	魚體內濃度 ppm	累積係數
0.5	3.83	127.7
2	2.36 2.36	78.7 78.7
3 5	1.48 1.52	49.5 50.7
7 10	$\begin{smallmatrix}1.44\\1.06\end{smallmatrix}$	47.9 35.5
15 20	0.76	25.2
30	$\begin{matrix} 0.71 \\ 0.25 \end{matrix}$	23.7 8.2

圖D2 泥鰍體內殘留甲氧基護谷的釋放(0.03ppm)

· · · · · · · · · · · · · · · · · · ·	蜆體內濃度 ppm	累積係數 ——————
0.5	1.58	52.7
1	1.25	41.6
2	1.19	39.6
3	0.82	27.3
5	0.64	21.3
7	0.56	18.7
10	0.46	15.3
15	0.20	6.8
20	0.14	4.7
30	0.08	2.5

圖D3 蜆體內殘留甲氧基護谷的釋放(ppm)

表 E 1 彰化及雲林地區採樣地點

採樣點編號	地點	河川或排水路名稱
F-101	彰化縣鹿港鎭埔尾	洋 子 厝 溪
F-102	彰化縣鹿港鎭埔脚	南 分 圳
F-103	彰化縣福興鄉福興	鹿 港 溪
F-104	彰化縣福興鄉麥厝村	舊 虎 尾 溪
F-105	彰化縣芳苑鄉新寶	四知圳
F-106	彰化縣芳苑鄉王功	王 功
F-107	彰化縣芳苑鄉芳苑	北 幹 三 支
F-108	雲林縣麥寮鄉新吉	三盛合作農場
F-109	雲林縣麥寮鄉麥寮	新 虎 尾 溪
F-110	雲林縣台西鄉新興	有才寮排水
F-111	雲林縣台西鄉台西	馬公厝排水
F-112	雲林縣台西鄉溪頂	舊 虎 尾 溪
F-113	雲林縣口湖鄉成龍	牛 桃 灣 溪

表 E 2 宜蘭地區採樣地點

採樣點編號	地點。	河川或排水路名稱
FE-101	宜蘭縣頭城鎭下埔里	頭 城 河
FE-102	宜蘭縣礁溪鄉石潮村	得子口溪
FE- 103	宜蘭縣壯圍鄉大福村	十三股大排上游
FE- 104	宜蘭縣壯圍鄉古亭村	十三股大排下游
FE- 105	宜蘭縣壯圍鄉新南村	美福 大排
FE- 106	宜蘭縣壯圍五結交界	蘭陽溪
FE- 107	宜蘭縣五結鄉清水村	多 山 河

表 E 3 彰化及雲林沿海地區地表水中丁基拉草殘留量

		Bu	Butachlor	conc.,	qdd					
No	7/23/87	3/08/2	8/28/87	9/29/87	10/29/87	7 9/29/87 10/29/87 11/30/87	3/1/88	3/15/88	4/8/88 5/2/88	5/2/88
	0 6749		0 4094	0 15 21	ND	ND	0,1174	ND	ND	ND
F-102	0.3747	0 1495	0 2071	ND	ND	ND	0.2462	0,4505	0,6116	ND
F-103	0.5839	0 1501	0.3554	ND	0,7728	ND	0_2664	0.2024	0.4532	ND
F-104	# ND	0.0330	0 1463	ND	ND	ND	0.0592	0.5455	ND	ND
F-105	1858	0.0299	ND	QN	ND	ND	ND	QN	ND	ND
F-106	0 3413	0.0621	0 0287	0.0555	0.1464	ND	ND	0.1989	1,1520	ND
F-100	0 5749	0.0302	0 1127	0.2571	QN	ND	0.3248	0.1921	ND	ND
F-109	0.0142	ND CN	N C N	N D	Q	ND	QN	ND	ΩN	ND
F-140	ON OTHER	a N	a C	Q	Q	QN	Q	ND	ND	ND
F-1119	0 5168	0 2700	0 3885	QZ	Q	0_0318	ND	ND	ND	ND
F-112 F-113	ND	0.0247	0,1152	QN	ND	ND	ND	ND	0.1509	ND
				,						

* ND : Not detected ($< 0.02 \ \mathrm{ppb}$).

宜蘭沿海地區地表水中丁基拉草撥留量

,		Bu	Butacholor	lor conc ppb	qċ				
o N	9/1/87	9/18/87	10/8/87	87 11/10/87 12/10/87 3/3/88 3/14/88 3/30/88 4/28/88	12/10/87	3/3/88	3/14/88	3/30/88	4/28/88
FE-101	0 1563	0 1657	ND	ND	0.1154	4.2604	0.8575	1,0265	ND
파도-102	0 3747	CIN CIN	ND	0 1902	ND	6,4918	0.3433	ND	ΩN
FE-103	0 2237	O Z	0 1421	ND	ND	3,1666	0,7127	ND	0.1379
FE-104	0.202	CN	ON.	0 2923	0.1210	10.8447	0,7543	ND	ND
FE-105	0.5503	0 1280	0 1130	N D	UN	7,3637	2,0389	2.0761	ND
FE-106	0.2333	0 0762	ND	ND	ND	1,2075	0.2337	0.3657	ND
FE-107	ON *	0 0739	ND	ND	0.0642	3,2667	0.4970	0.5876	ND
	1	•							

* ND : Not detected (< 0.02 ppb).

表 E 5 彰化及雲林沿海地區地表水中殺丹殘留量

Ž			-4	Senthic	carb co	nc., ppp			•		
2	7/8/87	7/23/87	2/30/87	8/28/8	7 9/29/87	7/8/87 7/23/87 7/30/87 8/28/87 9/29/87 10/29/87 11/30/87 3/1/88 3/15/88 4/8/88 5/2/88	11/30/87	3/1/88	3/15/88	4/8/88	5/2/88
F- 101	*ND 3	3.6076	ND	ND	ND	ND	ND	3,6321	ND	ND	ND
F-102	ND	1,9396	ND	ND	ND	ND	6.7862	1,7862	ND	ND	ND
F-103	ND	ND	1.6951	ND	ND	ND	ND	2.0112	1.3250	ND	ND
F-104	ND	ND	ND	2,8933	ND	ND	1,2887	ND	ND	ND	ND
F-105	6.017	3 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F-106	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F-109	ND	ND	ND	ND	1,7952	ND	1,6003	1,3241	ND	ND	ND
F-110	ND	ND	ND	ND	3.7564	ND	NO	ND	ND	ND	ND
F-111	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
F-112	ND	ND	1,2959	ND	ND	ND	1,5382	ND	ND	ND	ND
F-113	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
* ND	: Not	detect	* ND : Not detected ($<$ 1.2	1.2 ppb	b).						

* ND: Not detected (< 1.2 ppb) 表E 6 宜蘭沿海地區地表水中殺丹殘留量

N)			Benthiocarb	carb co	conc., ppb				
on l	9/1/87	9/18/87	10/8/87	11/10/87	12/10/87	3/3/88	3/14/88	3/30/88 4/28/88	4/28/88
FE-101	*ND	ND	ND	ND	2.1640	3,1324		ND	ND
FE-102	2.0734	ND	ND	ND	ND	2.9320	ND	ND	ND
FE-103	3,3305	ND	2,7691	ND	ND	2,7671	ND	ND	ND
FE-104	2.3872	ND	ND	ND	ND	3,2104	ND	ND	ND
FE-105	1,4091	2,6880	ND	ND	ND	2.8872	1,3352	1,2218	ND
FE-106	2,3863	ND	ND	ND	ND	ND	ND	ND	ND
FE-107	J	1,5025	ND	ND	ND	1,3231	ND	ND	ND

* ND : Not detected (< 1.2 ppb).

表 17 彰化及雲林沿海地區地表水中甲氧基護谷之殘留量

			Chlome	thoxyni	1 conc.	, ppb				
No.	7/23/87	7/30/87	8/28/87	9/29/87	8/28/87 9/29/87 10/29/87 11/30/87 3/1/88 3/15/88 4/8/88 5/2/88	11/30/87	3/1/88	3/15/88	4/8/88	5/2/88
F. 101	CN	UN	0 0340	ND	ND	0,0778	ND	ND	ND	0.0302
F - 101 F- 109	0 0312		0 0449	QN	ND	0,0259	ND	ND	ND	0.0465
F-102	CN		ND	ND	ND	QN	ND	ND	ND	0.0295
F-104	CZ		ND	ND	ND	ND	ND		ND	0.1527
F-105	Z		QN	N	ND	ND	ND		ND	ND
F-106	C Z		ND	N	ND	ND	ND		0.2149	ND
F-100) (Z		QN	ND	ND	0,0238	ND		ND	ND
F-110	i z		QN	ND	ND	QN	QN		ND	ND
다. 110 자-111	Z		ND	ND	ND	ND	0.0474		ND	ND
F-119	QN		ND	ND	ND	ND	ND		ND	ΩN
F-113	ND UN	ND	ND	ND	0.0233	ND	ND		ND	ND
		ł								

* ND:Not detected (< 0.02 ppb).

表 E 8 宜蘭沿海地區地表水中甲氧基護谷之殘留量

	88/	ND	Ω	Q	Д	379	•	D
Chlomethoxynil conc., ppb	4/28					0		
	3/30/88 4/28/88	1	0.0320	ND	ND	0.1705	ND	ND
	3/14/88	ND	ND	ND	ND	1,4542	0.0873	ND
	3/3/88	ND	ND	ND	0,0974	0.0248	ND	0.0491
	12/10/87 3/3/88 3/14/88	ND						
	11/10/87	ND						
	10/8/87	QN	QN	ON	QN	QN	ND	ND
	9/18/87 10/8	UN	C C	C Z	CN	QN	CZ	0.0200
	9/1/87	UN*		ZZ	Z	Q N	CZ	QN
NO.		FF-101	FF-102	FF-103	FE-104	FE-105	FF-106	E-107

四、參考文獻

- 1. 李國欽、康碧華(1979) 殺丹在模擬水稻生態系之分佈及其對水稻田 裡作作物生長之影響,植保會刊, 21:188-193。
- 2.徐爾烈(1979) 水田模擬生態系評估農藥代謝之可行性。國立台灣大學植物病蟲害研究所博士論文。
- 3. 李國欽、陳朝月(1981) 常用農藥對二種魚類之急毒性研究。科學發展月刊,第九卷第二期,第146頁。
- 4.胡承嶸(1982) 歷年來稻田殺草劑推廣實況,中華民國雜草學會會到 ,3(1):14-17。
- 5. 黃育清 (1982) 掃丹之特性及推廣,中華民國雜草學會會刊, 3 (1): 91-92。
- 6. 黃冠良(1984)除草劑 Naproanilide 在水稻模擬生態系中的分佈及 其代謝之研究,國立台灣大學農業化學研究所碩士論文。
- 7.陳玉麟(1986) 台灣水田主要除草劑之微生物分解,中華民國行政院 國家科學委員會專題研究報告,NSC 75-0409-B002-28。
- 8. Brown, A.W.A. 1987. Herbicide: Persistence and plant Ecosystem Effects. Ecology of Pesticide. pp.320-343. A Wiley-Interscience Publication, John Wiley and sons, New York.
- 9. Doudoroff, P., B. G. Anderson, G. E. Burdick, P. S. Galtsoff, W. B. Hart., R. Patrick, E. R. Strong, E. W. Surber and W.M. Van Horn. 1951. Bioassay methods for the evaluation of acute toxicity of industrial wastes to fish. Sewage and 1nd. Wastes, 23,1309-1379.
- 10 Hashimoto, Y. 1979. The present situation of aquatic

- hazard problem in Japan. Japan Pesticide Information ,36,27-31.
- 11. Konar, S. K. 1970. Toxicity of heptachlor to aquatic life. J. Water Pall. Contr, Fed., 42(8), part 2, 299-303.
- 12 Macek, K. C., C. Hutchinson and O. B. Cope. 1969.

 The effects of temperature on the susceptibility of bluegill and rainbow trout to selected pestecides.

 Bull. Environ. Cotam. Toxical., 4, 174-183.
- 13.Mackim, J. M. 1973. Effect of pollution on freshwater fish. J. Water Poll. Contr. Fed., 45(6), 1370-1407.
- 14. Mullison, W. R. 1979. Herbicide handbook of weed science society of American. 4th Ed. WAAS. p.75.
- 15. Nishiuchi, Y. 1974. Testing method for the toxicity of agricultural chemicals to aquatic organisms.

 Japan Pesticide Information, 19, 15-19.
- 16. Yusa, Y. and K., 1shikawa. 1977. Disappearence of benthiocarb herbicide in irrigation water. Asian-pacific Weed sci. soc. 6th Conf.: 596-602.