

基轉植物之生物安全性評估及管理

徐慈鴻 李貽華 李國欽

摘要

基轉植物栽培面積日益擴大，種類也日漸增多，為澄清對基轉植物安全性之疑慮，世界主要已開發國家及部份開發中國家都已制定了對基轉生物(包含動植物)的管理法規，以期在上市前進行必要的安全評估工作。

各國所訂定之管理法包含二大方向：一是作為食品之安全性；二是對環境衝擊之風險評估。不論是進行那一方面的評估，對轉殖基因之來源、轉殖基因之特性、轉殖基因之功能機制及表現方式、該基因調控產物之理化特性、基因載體、基因之植入方式、該基因在受體植物細胞內之位置及其表現之穩定度等都必需先要能完全的掌握。在作為食品時之安全評估方面，最重要的是要證明源自基轉植物之產品與傳統產品有實質之同等性。換句話說，轉入之外源基因或基因產物對人畜無毒，轉入之基因應不屬可調控過敏原產生者，另外還要考慮營養物質和基因產物之含量等。這些評估因子都可藉動物毒理試驗及化學分析等已成熟之標準試驗規範來進行，所以困難度不高。這類的資料可以通用，而不受國家或地區之不同而有差異。在對環境的衝擊風險評估方面，受體植物之一般特性、繁殖方式、栽培管理方式以及栽培地區都有密切的關係。評估的結果可能會有地區性的差異，某國家所得的結果可能不適用於另外的國家。對環境衝擊的風險評估包括有下列數點：一、受體植物對生態之影響，其內容包括對病害、蟲害或其他昆蟲、動物族群消長之影響。二、轉殖基因植物野化而演變成雜草之可能性或機率。三、轉殖基因流佈到近緣野生種或環境微生物之可能性及機率。受體植物對病害、蟲害或其他昆蟲、動物族群消長影響之風險評估試驗可根據農藥效果試驗規範之方法作為借鏡，並可將這些影響量化作為評估之用。唯不同地區關鍵病蟲害、有益昆蟲生態以及動物之食物鏈都不一樣，所以測試之對象也會不同，這在準備開拓國際市場時宜

特別注意。轉殖基因植物演變成農田雜草之可能性或機率方面，可以室內控制下的試驗來比較受體在獲得新的基因後會不會增加其生存競爭力，在生長勢、抗逆境、種子產量和生命力等方面是否比非轉殖植株強。若轉基因植物可以在自然生態條件下生存，勢必會改變自然的生物相，打破生態的平衡，尤其其母本植物原本就是普遍存在的野生種。在轉殖基因流佈到近緣野生種或環境微生物之可能性及機率方面，首先必需先作詳細的調查，在該轉殖植物環境釋放區鄰近有無近緣野生種的分佈，有些栽培植物會和周圍生長的近緣野生種發生天然雜交，而將轉入基因流佈到野生種中，並在野生種中傳播。若基因的產物具有生物活性，可能會增加野生種的競爭力而造成對環境的衝擊，若僅為改善品質者可能影響較少。

上述風險評估工作數據的收集，似都可先就單一因子按標準操作規範先作室內的試驗以取得量化的結果，再在模擬自然環境的控制條件下作複合因子的試驗，最後才進入田間觀察試驗。基轉植物對環境衝擊的風險評估與農用化學品的風險評估一樣，包含有五個步驟：一、基因及受體植物特性必須徹底瞭解；二、根據其要栽培的環境，近緣野生植物之種類、生態等資料進行可能產生之危害分析，可能的話應擬定評估的標準；三、進行此基轉植物在環境中流佈(含野化，基因流佈等)以及其生物效應之分析；四、根據上述資料進行風險評估，說明風險的特徵及可能產生危害的機率；五、進行風險管理，包含風險/利益比、本/益比、公眾評價、研究、監控以及減少風險策略之擬訂等。基改植物之食品安全評估應無地域上的差異，但基改植物對環境衝擊之風險評估則有地域上的差異，每個國家的管理辦法雖大同小異，但因栽培的環境不一樣，其要求的試驗資料也會不同，因此基轉植物應視市場個案準備環境風險評估之資料。現階段如何積極培養風險評估及風險管理人才，推動風險溝通制度，慎選基轉植物研發對象是當前之首務。

關鍵詞：基轉生物、風險評估、安全性評估、實質同等、基因流佈、野化

緒 言

基因轉殖植物簡單的說即是利用基因工程技術將任何生物(包括動物、植物及微生物)的基因轉移入植物的染色體中，經過基因重組過程後，會使接受轉移之植物表現此基因所調控的功能性性狀(traits)，諸如抗病蟲、耐除草劑、調控花色或者改變成分等性狀^(8, 9, 46)。

田間已種植或商業化之基因轉殖植物，依性狀(traits)可分為抗蟲、耐除草劑、抗病毒、延遲老化及軟化、雄株不育、生育恢復、花色改變及脂肪酸成分改變等種類。2002 年止，美國農部共准許 59 件基因轉殖植物完全商業化，其中耐除草劑之基轉作物為 26 件，抗蟲基轉植物為 18 件、其他 15 件^(13, 32)。另根據 ISAAA(International Service for the Acquisition Agri-Biotech Application) 統計，2002 年全球基轉作物之種植面積亦以耐除草劑者所佔比例最高，達 75% (44.2 百萬公頃)，其次為抗蟲作物之 17% (10.1 百萬公頃)，兼具抗蟲及耐除草劑之作物則佔 8% (4.4 百萬公頃)，抗病毒及其他性狀之基轉作物所佔比例小於 1% (<0.1 百萬公頃)⁽³³⁾。種植面積在 2002 年時達到 58.7 百萬公頃，較 1996 年(1.7 公頃)之種植面積增加 35 倍之多，其增長速度可謂極為快速⁽³³⁾。研發的基因轉殖植物種類至少涉及 69 種不同植物⁽¹⁸⁾；此外，研發之性狀範圍亦擴增至抗真菌、抗細菌、抗線蟲、耐鹽分、耐旱、改變氨基酸含量、碳水化合物代謝作用等，或者利用基轉植物生產藥用蛋白等，預期基因轉殖作物之種植面積會持續增加且種類會更具多樣性^(18, 32)。

儘管基因轉殖植物蓬勃發展，但這種越過長期物種演化的過程而產生的新品種，在自然界是不可能發生的，因此人們對這些有異於傳統育種方式而產生的基因重組植物釋入環境後到底會發生什麼問題充滿疑慮，為澄清這些疑慮，世界主要已開發國家及部份開發中國家都已制定了對基轉生物(包含動植物)的管理法規，以期在上市前進行必要的安全評估工作。環觀各國所訂定之管理法，所考慮者不外乎二大方向：一是作為食品之安全性評估；二是對環境衝擊之風險評估。食品安全性評估主要考慮基因轉殖植物與母本植物對人類健康影響方面之差異，考慮的項目包括毒性、致過敏性、營養成份之變化等^(2, 44, 45)；而環境影響評估之主要目的則是在比較轉基因植物與母本植物對環境影響之差異性，考慮的項目有轉基因植物野化為雜草的可能性、外源基因流佈時對近緣植物影響之可能性，以及轉基因植物對環境中非目標生物之影響等^(2, 4, 20)。本文之主要目的即在瞭解各國有關轉基因植物對生態環境及人類健康的可能影響(風險評估)之規定，謀求因應之道，並建立完善的轉基因植物風險管理系統，以期對我國農業生物科技產業具有積極正面之影響。

評估轉殖植物源食品之安全性

基轉植物食品安全性之評估，主要根據經濟合作暨發展組織(OECD)、聯合國糧食及農業組織(FAO)、世界衛生組織(WHO)與國際

生命科學學會(ILSI, International Life Sciences Institute)所採用的「實質之同等性(substantial equivalence)」之原則，只要證明源自基轉植物之食物或成分與傳統的食物或成分實質同等，則可認為與傳統食物或成分同樣安全。評估基轉植物食品安全性主要考量重點包括毒性資料、過敏性反應、營養資料、功能性、生物活性物質分析等^(1, 28, 31)。

一、毒性及食品安全評估(Toxicity and food safety assessment)

傳統糧食作物如稻米、小麥、玉米等都有長期安全食用之歷史，雖然都含有微量的天然的毒性成分^(37, 44)，但由於含量很少，因而不會對消費者產生危害。

轉殖植物及其產品是屬於全新的食物，由於沒有充分的食用安全歷史，因此需要進行食用安全評估以澄清疑慮。轉殖植物及傳統育種植物的最大差別在於這些原本不存在於植物體的外源基因會形成新的 RNA 及蛋白質分子，這些分子可能對人體引起直接毒性效應(unwanted direct toxicological effects)，這是由於導入外源 DNA 分子的基因轉殖植物可能直接產生新的有毒成分，或是使植物原有的有毒成分有所改變，如含量的增加等。也可能會引起間接毒性效應，由於目前所使用的基因轉殖技術屬於一種碰機導入的過程，這些外源基因進入植物染色體後很有可能影響到其他基因的調控，間接導致有毒成分的產生或累積，或是產生不預期的效應。基轉植物源食品安全評估項目主要分為“毒性及食品安全評估”及“過敏性反應評估”^(2, 44, 45)。

在進行食品安全評估前，應就下述之資料有徹底之瞭解：(一)外源基因的分子特性；(二)確認外源基因產物的毒性；(三)確認因為轉殖過程中所可能引發的其他基因的調控而有不可預期的產物。

測試外源基因產物的毒性，可利用傳統毒理學 *in-vitro*(如老鼠急毒性餵食試驗)及 *in-vivo*(如模擬哺乳動物的分解消化試驗)的試驗方法進行⁽²⁷⁾。

在測試轉殖過程中是否可能會引發其他基因的調控而造成有不可預期的產物發生，主要是根據“實質同等性”的原則來進行，也就是從毒理學、營養學或者保健觀點(wholesomeness)來比較探討「轉基因植物及相關產品」與「非轉殖母本植物及相關產品」間之差異性^(28, 44)。關於轉基因食物之安全評估流程可分為兩個步驟，第一步驟是評估轉基因植物與非轉殖母本植物是否具有實質同等性；第二步驟則是進行毒性測試及過敏性反應評估。

二、實質同等性測試

評估轉基因植物與非轉殖母本植物是否具有實質同等性，應先充分瞭解轉殖植物、母本植物及外源基因的相關特性，包括食用安全歷史，

再根據轉殖植物之種類及用途選擇適當的關鍵成分進行定量分析及植株栽培時形態學及行為學之定性觀察，並與非轉殖母本植物之相同部分進行比較，同時參考母本植物被人類所攝取的食用安全歷史，以確定轉殖植物與非轉殖植物間是否為“實質同等性”，如果經比較轉殖植物與非轉殖植物間為“非實質同等性”(non-substantial equivalence)且這些差異與轉入外源基因有關，則將外源基因產物區分為“protein”及“non-protein”類。

至今仍無國際通用的標準來決定每種作物應該選擇哪些關鍵成分(key substance)作分析比較，1998年北歐國家會議(Nordic Council)就棉花、炸油用油菜、玉米、大豆及番茄等五種作物提出包括 proximate analysis(protein、fat、ash、moisture)、carbohydrates、fatty acid profiles、amino acid profile、toxicants/antinutrients 以及 allergenic substances 等六大項含 37 種分析項目作為“實質同等性”比較參考^(37, 44)。目前在歐盟國家已商業化的轉基因作物皆已進行實質同等性的比較。同樣是轉殖玉米由於所轉入基因種類及數目不同需要評估的成份便有差異，這其中也同時考量了該種轉基因植物的食用性及其衍生產品的種類及用途⁽⁴⁴⁾。成份分析的結果需要進行統計分析，以確認這些關鍵成分在轉殖植物及其母本植物間是否有顯著差異，如果兩者間無顯著差異則可認定該轉基因植物品種與其母本植物具有實質同等性；如果差異超過某種程度(如 20%，Nordic Council)，則表示在轉殖過程中可能在植物體中已出現不預期的效應(unwanted effect)，應進一步探究不預期效應產生的可能原因。導致不預期效應之發生原因與插入作用(insertion)、多效性(pleiotropy)及組培變異(somaclonal variation)等有關。insertion 指外源基因插入到某段基因組中，導致該基因組的功能受到阻斷而引發植物成份的改變。pleiotrop 指外源基因不但使植物表現出新的性狀但同時也使植物出現其他的改變，如基因產物和植體其他成份發生交互作用降低某種酵素的活性引發其他的作用受到影響等、或者外源基因產物生成的過程與其他作用途徑發生關連等。somaclonal variation 指轉殖成功的植株利用組織培養技術進行無性繁殖時，所分化的植株在理論上應與母體植株具有完全相同之遺傳組成，但是在實際培養過程中，因不明的原因會使的植體的染色體出現改變或不穩定的現象，培養植體會因發生組培變異而產生各種程度不等之變異株，導致植體的形態、行為、巨量或微量成份出現改變。

轉殖植物於田間種植時，同時應進行形態學(morphology)及行為學(behaviour)的觀察分析，以確認是否出現異常，若出現異常情形表示植體可能因基因修飾作用而產生不預期的效應，而累積這方面的資料有助

於安全性評估的進行⁽⁴⁴⁾。

三、基轉植物源食品毒性測試

經實質同等性測試之後如果經比較轉殖植物與非轉殖植物間為“非實質同等性”，則視基因產品之種類必要時應進行毒性試驗。測試外源基因產物的毒性，可以利用傳統毒理學 *in-vitro*(如老鼠急毒性、亞急毒性及慢性等餵食試驗)或以 *in-vivo*(如模擬哺乳動物的分解消化試驗)的試驗方法進行⁽²⁷⁾。

根據試驗方法(test packages)針對已知之物質可求出其每日可接受攝入量(Acceptable Daily Intake 簡稱 ADI)或者對混合之組成物求出其 ADI，此 ADI 非針對某一物質而是針對某一食品，故稱為“ADI not specified”來估算該物質或食品之可攝入取食量。如果外源基因是產生某種酵素群，同時調控一系列相關的代謝途徑，或者無法解釋轉殖植物與母本植物之差異性是外源基因所導致時，則需要依照“whole food assessment”的試驗方法進行安全性評估⁽⁴⁴⁾。最後要再強調的是評估轉基因植物及其相關產品的食用安全性時一定是依基轉植物之特性作個案處理(case by case)。

四、過敏性反應評估(Allergenicity assessment)

食物過敏為食物超敏反應(food hypersensitivity)的一種，係由免疫系統過份反應所導致。這類的過敏反應與免疫球蛋白 IgE 密切相關，當過敏原進入人體後使 B 細胞(B-cell)產生 IgE，IgE 和血液中之肥大細胞結合成為致敏細胞，其與抗原(過敏原)相結合後，引起肥大細胞釋放出組織胺(histamine)、白三希素(leukotrienes)等物質，進而引起過敏性氣喘(asthma)、過敏性結腸炎、過敏性鼻炎、濕疹(eczema)、皮膚瘙癢症、痙攣(cramps)、枯草熱(hay fever)等各種症狀，嚴重者出現過敏性休克導致死亡。大多數食物過敏源為分子量約 10~70KD 的糖蛋白(glycoproteins)，在酸性及加熱狀況下相當穩定，有某種程度的抗消化分解。90% 以上的過敏原主要來自 8 種食物群包括：花生類、牛奶、蛋類、大豆類、樹果類(如胡桃、榛果等)、魚類、甲殼類及小麥類^(16, 45, 47)。

在評估基轉食物之是否會導致過敏，首先需要看這些外源基因的來源，如果這些外源基因本身會產生過敏原則有可能將過敏原帶入轉殖植物中，除此外，由於轉殖過程時外源基因是隨機插入植物基因組中，因此有可能導致植物產生過敏原，相對的也可能使植物減少或者不產生過敏原。評估基轉食物是否會產生過敏原，首先應確認外源基因的產物否具有過敏原的特徵，並經過過敏原的序列同源性(sequence homology)比對，若不屬於已知過敏原者再分別經過“specific serum screen”及“targeted serum screen”步驟所涵蓋的方法進行測試，最後進行抗消化

分解測試式(抗胃蛋白 試驗)及動物測試式(豬、老鼠、兔子)，經過抗胃蛋白及動物試驗的結果皆屬於 positive 者表示其外源基因所產生的蛋白質變成過敏原的可能性很高，如果結果皆為 negative 則表示該蛋白質變成過敏原的可能性極低^(29, 45)。

轉基因植物對環境的安全性評估

前面已經提過基轉植物沒有經過長期之演化而完全是由人工製造的新物种，這些新物种釋放至環境後是否會對生態環境產生衝擊也是眾所關切的問題。各國的管理法對這方面皆有明確的規定以澄清疑慮。這些疑慮粗略來分可分為三方面來說明：基轉植物是否會對環境中非目標生物族群產生衝擊；基轉植物是否會有野化(Weedness)的可能性；基轉植物中植入之功能性基因是否會流佈到其他生物之中而造成不期望發生的效應。

一、基轉植物對非目標生物族群的影響

廣義地說，“基轉植物對環境中非目標生物族群之衝擊”包括轉基因植物本身(直接效應)或者種植轉基因植物伴隨的耕作過程改變而產生(間接效應)對種植區內以及種植區周邊其他生物產生非預期的不利效應(adverse effects)。以抗蟲基轉植物(Bt 基轉植物)為例，轉 Bt 植物所產生的內毒素除了能消滅目標害蟲外，有可能同時殺死同類的有益昆蟲或其他非目標昆蟲，一旦殺蟲過程無法控制時，則可能影響以這些害蟲為生的天敵(如昆蟲和鳥類)數量降低，進而破壞生態平衡及生物多樣性⁽³⁵⁾。在耐除草劑轉基因植物對環境的影響方面，由於除草劑本身對於昆蟲、動物之毒性低，因此耐除草劑轉基因植物本身對非目標生物族群並無直接效應，但是伴隨耐除草劑作物田耕作管理方式的改變(如藥劑使用種類及噴施方式)則會引發間接效應，包括因為田間草類種類及數量的減少並影響以這些草類植物為食物或遮蔽處所之其他昆蟲及動物族群之生存，進而導致鳥類的食源減少，最終影響生物多樣性⁽³⁵⁾。

評估轉基因植物對非目標生物族群之衝擊主要根據「生物農藥」的評估方式進行，但所考量的生物種類及範圍更廣，評估的資料及步驟依其先後次序可分為三個階段^(14, 20, 35)：

(一)第一階段 (Tier 1)

確認對非目標生物可能產生的影響(Identification of possible effects on non-target organisms)：這個階段至少要列舉並討論出該基轉植物在其釋放的環境中有那些族群種類會受到新植物成分所影響或者因

轉基因植物之存在而迫使其改變習性，這些非目標生物包括其他植物種類、傳送花粉者(pollinators)、腐生者(detrivores)、草食者(herbivores)、肉食者(predators)等，並探討有無排除這些影響的可能，一旦無法排除這些非目標生物受到影響則需進行第二階段工作(Tier 2)。

(二)第二階段 (Tier 2)

評估非目標生物的效應(Assessment of effects on non-target organisms)：評估時要盡可能的以生態的角度來執行評估試驗，需要考量物种的選擇(choice of species)、暴露的狀態(exposure conditions)及選擇試驗結束點(end-point)等因素，進行此階段的試驗供試之非目標生物需包括：對草食者、花粉傳遞者(蜜蜂)、腐生者、微生物族群及其他植物族群等，這些非目標生物族群可能會因為轉基因植物的入侵而被改變，並進而影響生物多樣性，此外另一種形式的直接影響如種植雄不稔的轉基因植物，由於不會產生花粉因此直接影響花粉傳遞者的食源。而間接效應影響的層次則擴及食物鏈的改變，如前面所述種植耐除草劑植物時所引發的一連串生物物种及族群的改變，在進行試驗前對該基轉植物要釋放的環境中非目標生物的種類及族群等基本資料必須要徹底掌握，此等資料會因釋放的環境而有所差異。試驗評估主要在生長箱、試驗室或溫室中針對個別之族群進行。

對於轉基因植物對非目標生物的直接效應評估，該如何選擇並進行相關試驗則根據：1.轉基因植物所攜帶外源基因的作用方式及在植體所表現的部位(在根、葉、花、種子或者整株植物)。2.有毒化合物的分佈及其物种專一性，如果外源基因本身涉及抗病、抗蟲、增加剋他物質的活性(increased allelopathic activity)，則必須確認並建立這些外源基產物的專一性及所影響的物种種類，因為在其他非農業生態(agro-ecosystem)的環境中這些受影響之物种可能非常重要。一旦這些非目標生物在試驗中出現異常行為則需進一步進行田間試驗(Tier 3)。

對於測試物种的選擇常因個案之不同而不同，以 Bt 轉基因植物為例，美國 EPA 是根據“生物農藥”的測試原則來規範⁽³⁵⁾，首先要了解這些 Bt 毒蛋白在轉基因植物各器官的含量範圍，通常這部份的資料也會因為個案而有所差異。關於試驗結束點(end point)的選擇則依所試驗的非目標生物物种而定，而試驗物种選擇的種類則需包括^(14, 23)：

(1)鳥類：14 天及 28 天齡的幼鳥毒性試驗(如 young bobwhite quail 或 mallard duck)。

(2)水生動物試驗：包含魚毒(國外以 rainbow trout、coho salmon、bluegill sunfish 等寒帶及溫帶魚類)及水蚤(Daphnia)試驗。主要考量 Bt 轉基因水生植物(如水稻，中國農科院發展的抗螟蟲水稻已進入環境釋放

階段)及鄰近水體的轉基因作物對水生生物之影響。

(3)非目標昆蟲試驗：選擇可能接觸到基轉植物毒蛋白的肉食性及寄生性昆蟲種類，另外也要選擇與目標昆蟲系統發育相近的(phylogenetic proximity)非目標昆蟲種類進行評估。此外很重要的是要評估有益昆蟲如花粉傳遞昆蟲(蜜蜂)所受到的影響，試驗之昆蟲除蜜蜂外，還需要挑出3種昆蟲能代表以下至少二類 parasitic dipterans(寄生雙翅類)、predaceous hemipterans(肉食半翅類) predaceous coleopterans(肉食鞘翅類)、predaceous mites(肉食螨類)、predaceous neuropterans(肉食脈翅類)及 parasitic hymenopterans(寄生膜翅類)的昆蟲族群。

(4)無脊椎動物試驗：評估轉基因植物殘株長時間的存在土壤中，對無脊椎動物可能的影響，以蚯蚓或跳蟲(Collembola)作為試驗對象。

(三)第三階段 (Tier 3)

對非目標生物族群影響的田間試驗(Measures of effects on non-target organisms in the field)：針對第二階段試驗結果，對轉基因植物的反應具明顯族群差異的各類非目標生物進行田間試驗評估。進行此階段試驗時，以昆蟲為例，採樣必須調整成所關注的昆蟲種類、其互補(supplementary)昆蟲種類，當然也包括其他有相同功能族群的昆蟲(other species of the same functional group)。對植物的非目標效應也需要進行田間試驗評估，此部份的試驗可以設計包含在下節所述之侵入試驗中(invasiveness)。

二、基轉植物野化(Weediness)可能性的風險評估

雜草(Weed)的定義，根據美國雜草科學學會(WSSA, The Weed Science Society of America)的定義雜草是人類不想要但卻分布廣泛的植物，這些植物會入侵佔領耕地及非耕地(如國家公園、水域、野生動植物棲息地)，干擾人類的活動降低農作物產量及影響野生動植物之生存，進而造成經濟損失、破壞生態環境等⁽⁴⁶⁾。

Baker(1974)提出 12 項特徵作為判斷某種植物是否有變成雜草的潛勢(見表 1.)。當一種植物被引入新的棲息地時，能持續的在棲息地生存繁衍繼而逐漸改變或者入侵其他的棲息地，則該植物就有變成雜草的風險，因此透過繼續存在性(persistence)及侵入性(invasiveness)兩種策略，植物有可能在棲息地成為雜草^(20, 36, 46)。

當基因轉殖植物所具有的新性狀，包括使植物具有抗病、蟲害等生物性逆境的性狀，而除草劑、耐旱及耐鹽等非生物性逆境的性狀，改變種子休眠、發芽及散佈的性狀，改變根伸長特性的性狀等，皆可能促使植物在田間較其他非基因轉殖植物更具持續生存的能力，更具侵入其他棲息地的能力或者兩者兼具，如此基轉植物則有變成雜草的可能性。因

此基因轉殖植物的本身已經可歸類為雜草或者相當接近雜草的特性時，只要一個或多個轉基因介入時即會使該植物具有明顯的生態學上的優勢，增加植物的持續生存性及入侵性而變成雜草。例如在美國包括苜蓿(alfalfa)、百慕達草(Bermuda grass)、蘿蔔、黑莓(blackberry)、油菜子、覆盆子(raspberry)及向日葵等植物即具有上述特性⁽⁴⁶⁾。

評估基因轉殖植物的雜草化風險，要依個案方式採多階段評估，一般可依序分為四、五階段來評估。以下就不同階段之試驗之資料需求、試驗環境等作簡要說明。

(一) 第一階段 (Tier 1)

徹底瞭解基因受體植物的背景資料、生物學特性、生態環境及遺傳變異等，探討其母本植物是否已經可歸類為雜草或者相當接近雜草的特性、其近緣植物是否為普遍存在的雜草；此外，對轉殖基因之來源、轉殖基因之特性、轉殖基因之功能機轉及表現方式、該基因調控產物之理化特性、基因載體、基因之植入方式、該基因在受體植物細胞內之位置及其表現之穩定度等都必需充分瞭解掌握^(15, 20, 36, 46)。

(二) 第二階段 (Tier 2)

此階段重點在於比較轉基因植物與母本植物在環境中之表現差異。瞭解載入外源基因之受體植物及其子代與其母本植物(非轉殖植物)相比較下，對環境之適應力(fitness)之改變，主要是在固定比率或密度之下觀察植物全生長期的變化(全生長期包括發芽、幼苗存活及生長、成株存活及生長、開花授粉、基因流佈、種子產生、散播及種子庫、部分植物的營養繁殖等階段)，以比較轉殖植物與自然界或棲息地存在的相關近親品種間的適應力及競爭力。故名之謂競爭試驗(competition experiments)，其結果可用以評估該基轉植物的野化潛能。由於對於多年生的轉殖木本植物無法進行該全生長期的觀察，故也可選擇生長關鍵期進行試驗並以生長模式輔助評估^(20, 36)。

本階段的試驗設計必須能量化轉基因植物及其新生代與逆境強弱範圍間的相關關係。其方法是逐步加強逆境因子的強弱，使轉基因植物及其母本植物從「無競爭優勢」的試驗條件一直到最後出現「顯著競爭優勢」的試驗條件，如果轉殖植物會分泌毒他物質(allelopathic substances)，則需要涵蓋對“目標”及“非目標”植物的競爭試驗⁽²⁰⁾。

這階段的試驗主要在實驗室、溫室或者生長箱等受控制的環境進行，對於在上述試驗環境中無法良好生長者，則規劃半田間試驗進行生長試驗；對於試驗環境中之各式生長條件則根據第一階段(Tier 1)所收集之訊息來決定。

(三)第三階段 (Tier 3)

此階段主要是在實際田間的種植情形下，比較轉殖植物與母本植物的競爭優勢情形。根據第二階段的試驗結果若轉殖植物並未較母本植物具競爭優勢，則選擇適合母本植物生長之區域進行小規模的取代試驗(abbreviated replacement experiment)；若顯示轉殖植物較其母本植物更具競爭力，則必須以田間實際種植的規模(field margins or the full range of growing environments)進行全生長期的族群取代試驗(full life population replacement experiment)，以瞭解在實際栽培環境中轉基因植物的運作(perform)是否會比其母本植物更具優勢，變成具入侵性植物(invasion)，且影響棲息地其他物種之生存^(15, 20, 43)。

田間試驗常需要經歷 3 個世代的評估，選擇的試驗區環境的形態及數目必須因不同轉殖植物的種類來決定，但選擇的田間試驗環境必須是適合轉殖植物或其母本植物所生長栽培的狀況，對於在第二階段試驗中較母本植物具競爭優勢之轉殖植物，在選擇試驗環境需考慮母本植物可能出現的所有環境形態，例如路邊、濕地、非耕地、草原等不同形態的棲息環境；此外，試驗區內可能有近親作物或野生植物的存在，同時會有自然狀況下各種生物性(病、蟲害)及非生物性(如乾旱)逆境因子之存在，並且要特別注意生長階段中最敏感時期植物的變化(change in the most susceptible life stage)^(15, 20)。

(四)第四階段 (Tier 4)

本階段屬於定量判斷的階段(quantitative sense)，將 Tier 2 及 Tier 3 的試驗結果及試驗區的各種環境參數結合數學及空間模式，以估計模擬轉殖植物在棲息環境中的競爭優勢及對棲息地生態之可能的影響，如果該轉殖植物經評估後較母本植物具競爭優勢則屬於高風險者需要考慮是否適合商業化種植。但另一方面研發單位或公司也可藉此階段試驗證明其研發的基轉植物在某些環境條件下，「較母本植物更具競爭優勢的轉殖植物不會有轉變為雜草的可能性」，這部分的田間試驗必須在選擇更多不同的生態環境中，進行多年的、小規模的田間試驗，而且結合研發公司、政府管理單位、農藝學家、生態學家、統計學家等共同進行^(15, 20, 46)。

三、基因流佈發生的原因及其對環境的衝擊

轉殖植物所攜帶之外源基因流佈到自然界之途徑包括水平基因流佈或稱水平基因轉移(horizontal gene flow (or transfer))及垂直基因流佈(vertical gene flow)或稱花粉基因流佈^(15, 34, 46)。

水平基因流佈是指轉殖植物之外源基因流佈於不同種甚至不同生物界之生物體間，其流佈主要經由自然界存在之細菌、病毒或是嗜菌體所

轉移，水平基因流佈的轉移機制(transfer mechanism)包括：conjugation、transformation 及 transduction 等方式⁽⁴⁰⁾，這些轉移機制在自然環境或者人類的腸道中原本就會發生，是細菌進化的途徑之一，因此水平基因流佈並非是針對基因轉殖生物所特有的名詞。關於基因轉殖生物中外源基因之轉移研究或相關資訊相對較少，DNA 分子經由基轉植物轉移至其他生物體之可能途徑或機制仍所知有限。對於基因轉殖植物的外源基因轉移至細菌體內的研究主要仍是在實驗室中以相當人為的方式所得的實驗結果，至今尚未有具體的田間試驗資料，初步估計在自然環境中發生轉移的頻率非常低約 10⁻⁷ – 10⁻¹¹^(34, 38)。

垂直基因流佈是透過轉殖植物與其近緣種植物間之雜交授粉(有性生殖)所產生的族群間的基因流佈，當轉基因植物釋放入環境後，轉殖植物有很高的機率經由花粉傳播而與種植區域原本存在的母本植物或近緣植物發生雜交(hybridization)，而產生帶有外源基因的子代(F1)，F1 子代再與親本植株發生回交作用(backcross)，則使外源基因漸漸融合入該近緣族群的基因庫(introgression)。除花粉外，包括種子、果實及孢子等繁殖體(diaspora)也有可能導致基因流佈之發生，但目前關於轉基因植物的基因流佈研究主要集中於透過花粉傳遞的方式⁽¹⁵⁾。

當外源基因尤其是各種抵抗生物或非生物性逆境因子之外源基因，透過基因流佈進入近緣植物族群時，這個外源插入基因(inserted gene)會改變近親植物的競爭力，使其有變成雜草的風險，同時改變了自然生態的群落結構，再透過漸漸作用則可能導致植物族群多樣性(diversity)的降低^(15, 20, 46)。

基因流佈分類及風險評估方面常以下述的工作步驟進行：

(一)第一階段 (Tier 1)

徹底瞭解受體植物的特性，並調查轉殖植物在預備釋放區中之所有相關近緣植物種類，評估受體植物和近緣植物發生雜交(hybridization)的可能性。在這個階段歐盟等國家是利用標準化的代碼(codes)來協助評估轉殖植物在釋放區是否會有基因流佈發生的風險，代碼主要根據轉殖植物花粉的散佈(Dispersal of pollen, 簡稱 Dp)、轉殖植物繁殖體的散佈(Dispersal of diaspora, 簡稱 Dd)及釋放區內近緣植物的種類及分佈密度(Frequency of distribution of wild relatives, 簡稱 Df)等三項指標而定，每項指標再細分為七個等級(表 2.)⁽¹⁵⁾。根據代碼等級，將轉殖植物基因流佈的風險分為 no gene flow、minimal gene flow、low but local gene flow、substantial but local gene flow effects、substantial but wide-spread gene flow effects 等五類。

若無足夠的資料訊息作判斷，則需在實驗室進行轉殖植物與相關近親異種植物間簡單的雜交試驗(如 Experimental pollination, Forced fertilization)，以確認是否會發生雜交作用，並產生帶有外源基因子代。

(二)第二階段 (Tier 2)

對於因基因流佈的所產生帶有外源基因的子代，需在控制的環境條件下(如溫室、生長箱或小規模田區)進行試驗，以測試帶有外源基因的 F1 及其他子代之競爭適應力以及外源基因漸漸參入野生植物族群的機率(probability of introgression)等。此階段很重要的工作是估算雜交機率、不同雜交種間的競爭力、外源基因的“選擇有利性”(selective advantage of inserted gene)、外源基因在不同回交世代中存在的機率以及固定融合入自然族群的機率等。

一旦雜交子代(hybrids)形成的機率高，而這些子代在環境中更具有競爭優勢，且外源基因有可能漸漸參入野生植物族群的基因庫中，那麼這些雜交子代植物必須進入上述受體植物野化風險評估的第二階段步驟，以完整評估因基因流佈產生的子代其野化為雜草的可能性^(15, 20, 46)。

歐盟環境部 2002 年的報告⁽²¹⁾已歸納出不同基因轉殖作物(包括：炸油油菜、甘蔗、玉米、馬鈴薯、小麥、大麥及水果等)透過花粉或種子(outcrossing)引起 gene flow 的頻率(frequency)。其內容包括個別基因轉殖植物的試驗結果，以抗除草劑(glyphosate or glufosinate)之炸油用油菜(Brassica napus ssp. oleifera)為例，該作物屬於十字花科蕓苔屬之植物，不管在作物或雜草中其近親植物相當多，在探討 gene flow 時就需考慮 crop to crops 及 crop to wilds 之間基因流佈的可能性，透過試驗可獲得在種植基改油菜區域之不同方位及不同距離都發現帶有外源基因的雜草種子。

四、抗病毒轉殖基因植物之基因流佈(gene flow)所導致之生態衝擊

農作物栽培過程中作物一旦遭受病毒之感染及危害，往往因無適當之藥劑可用而造成農作物大量損失，因此研發抗病毒轉殖基因植物(virus-resistant transgenic plants, 簡稱 VRT plant)非常具有農業及商業價值，目前在美國及中國大陸已准許抗病毒之轉殖基因植物上市。

產生抗病毒基因轉殖植物之機制大致可歸納為四種方式分別為 Coat protein mediated resistance (CPMR)、Replicase-mediated resistance (Rep-MR)、Movement protein mediated resistance (MPs-MR) 及 Nucleic acid mediated resistance(gene silencing)等；其中以 Coat protein mediated resistance (CPMR)為目前研究最清楚且最廣泛被應用於產生抗病毒轉殖植物的方法，主要的機制是將病毒基因序列中控制產生蛋白質外鞘的基因片段轉殖到植物的基因中，使植物有能力製造病

毒之蛋白質外鞘，一旦來源基因之病毒或其近緣病毒侵略植物時，植物可產生大量的鞘蛋白使入侵病毒無法進行脫鞘作用(uncoating)，或脫鞘之後其核酸馬上被大量的鞘蛋白所包被(encapsidation)，而干擾到病毒之複製，此種亦稱為遺傳工程式的交互保護作用(genetically engineered cross-protection)，此方法既無傳統交互保護的風險，使用時又不增加成本，因此廣被採納^(5, 8, 11, 17)。

抗病毒轉殖植物之病毒基因產物不論是 RNA 或 protein 和另一感染植物的病毒(可以為抗病毒轉殖植物來源基因之近緣病毒或其他病毒)之間會產生 synergism、heteroencapsidation 及 recombination 等交互作用，其中 synergism 乃起因於其他病毒的感染而使抗病毒轉殖植物的病害加劇，而感染轉殖植物的其他病毒也可能因為 heteroencapsidation 作用(又稱為 transcapsidation)的發生，使得原本不會被昆蟲或其他生物媒介傳送的病毒變成可以經由這些途徑而散佈^(11, 46)，這二種交互作用主要發生於抗病毒轉殖轉殖植物的周邊，屬於非常持久型可回復的 phenotypic effects，當造成這二種作用的環境或生物因子不存在時這二種情形就不會發生⁽¹¹⁾。而重組作用(recombination)是最有可能造成基因流佈的交互作用，因為重組作用會導致病毒基因不可逆的改變且在自然界發生的頻率甚高。在病毒的世界裡觀察到有非常高的變異性(variability)存在，特別是 RNA 病毒，重組作用是導致病毒高變異性主要的原因之一，是病毒進化的力量。RNA 重組作用是病毒挽救及修復 RNA 複製過程中因突變所導致的錯誤的手段 RNA 重組作用到目前為止持續扮演增加病毒變種及進化的重要關鍵角色。因此，透過 RNA 病毒的重組作用，抗病毒轉殖植物所攜帶的病毒 CP(coat protein)基因是否會和其他感染植物的病毒 RNA 發生重組作用，而產生新型病毒或者使某種病毒的感染寄主種類增加，造成較原病毒母株為害更劇，是需要探討的問題^(11, 12)。Greene & Allison 的報告已經很精確的利用抗病毒轉殖煙草證明 CCMV(chlorotic mottle bromovirus)重組作用之存在⁽³⁰⁾。目前大多數證明抗病毒轉殖植物與感染病毒間重組作用存在的實驗都是在高選擇性壓力(high selection pressure)的環境下進行的試驗⁽¹¹⁾，但也有報告指出在較溫和的選擇性壓力下，CaMV(cauliflower mosaic caulimovirus)與抗病毒煙草植物之轉殖基因間亦存在重組作用⁽⁴⁸⁾。除重組作用外，抗病毒轉殖植物與其他轉基因植物一樣，可經由與近緣植物雜交作用產生基因流佈⁽⁴⁶⁾。

因此，抗病毒轉殖植物可能引起的生態衝擊除了同前面所述是否會使轉殖植物本身變成雜草或者透過雜交作用而將抗病毒特性傳送給近緣植物並使其具有競爭優勢之外，特別需要考慮抗病毒基改植物是否會和

另一感染病毒進行重組作用，並導致新型的病毒基因體(virus genomes)產生。關於抗病毒轉殖植物可能引發的生態衝擊在歐盟國家已成立研究團隊，針對 Cucumoviruses 及 Potyviruses 病毒群積極進行研究中⁽²⁴⁾。

表1. 植物理化為雜草潛勢的判斷特徵

Table 1. Weed characteristics (from Rissler *et al.*⁽⁴⁶⁾ and Ammann *et al.*⁽¹⁵⁾)

Weed characteristics from Baker (1974)

1. Germination requirements fulfilled in a broad range of habitats
2. Discontinuous germination (internally controlled) and great longevity of seeds
3. Rapid growth through vegetative phase to flowering
4. Continuous seed production for as long as growing conditions permit
5. Self-compatible but not completely autogamous¹⁾ or apomictic²⁾
6. When cross-pollinated, unspecialized visitors or wind utilised
7. Very high seed output in favorable environmental circumstances
8. Produces some seed in wide range of environmental conditions; tolerant and plastic
9. Adaptations for short- and long-distance dispersal
10. If a perennial, vigorous vegetative reproduction or regeneration from fragments
11. If a perennial, brittleness³⁾, so not easily drawn from ground
12. Has ability to compete inter specifically by special means (rosette, choking growth, allelochemics)

1)Autogamous plants are plants where all seeds are always the result of selfing.

2)Apomicts are plants that require pollination to trigger embryo formation, but there is no actual fusion of gametes. The embryo is a clone from the mother plant.

3)Brittle plants are vulnerable plants, that, when drawn from the ground, break in such a way that the roots remain in the soil.

表2. 歐盟評估轉殖植物基因流佈風險之標準代碼

Table 2. The Dpdf gene flow indices adapted to European needs as a whole (from Ammann, *et al.*⁽¹⁵⁾)

Classification of the codes of dispersal of pollen (Dp)	
Dispersal of pollen hybridisation potential, including a differentiation of possible negative ecological effects of the inserted gene itself. Categories 0 (lowest risk) to 5 (highest risk) and U (unknown).	
Dp0:	No wild relatives in the area (country) under consideration
Dp1:	No compatible wild relatives in the area (country) under consideration
Dp2:	No records of spontaneous hybrids in the area (country) under consideration
Dp3:	Occasional natural hybridisation, no backcrosses observed in the area (country) under consideration
Dp4:	Natural hybridisation occurs hybrids are fertile and do backcross
Dp5:	Natural hybridisation occurs fairly often, hybrids are fertile and do backcross frequently
DpU:	Data too scanty or lacking at all, no evaluation possible

Classification of the codes for the dispersal of diaspores (Dd)	
Dd0:	No chance for diaspore dispersal (seeds are sterile or deficient)
Dd1:	Diaspore dispersal possible occasionally under very favorable and exceptional conditions
Dd2:	Diaspore dispersal possible under favourable conditions
Dd3:	Diaspore dispersal occurs, fruiting is usually undesirable and is normally suppressed by various methods
Dd4:	Diaspore dispersal is important, fruiting occurs normally during cultivation
Dd5:	Diaspore dispersal is the rule, fruiting occurs very frequently and is very abundant
DdU:	Data too scanty or lacking at all, no evaluation possible.

Classification of the codes for Df (frequency of distribution)	
Df0:	Wild relatives not known in the wild or as feral populations in the area (country) under consideration
Df1	Wild relatives extremely rare in the wild and do not occur as feral populations in the area (country) under consideration
Df2:	Wild relatives very rare in the wild and/or they occur sporadically as feral populations in the area (country) under consideration
Df3:	Wild relatives and/or their feral populations not very common in the wild in the area (country) under consideration
Df4:	Wild relatives and/or their feral populations not frequent in the wild but well distributed over the whole plateau in the area under consideration
Df5:	Wild relatives and/or their feral populations common in the wild and well distributed over the whole area (country) under consideration
DfU:	Data too scanty or lacking at all, no evaluation possible.

結論

為因應生物技術時代的來臨，各國紛紛訂定 GMO 管理辦法以規範 GMO 正式釋放至環境。實質上各國所訂定之管理法其所規定之安全性評估原則都是引用自毒物風險評估之觀念，以下就如何配合管理法進行基轉植物之風險評估及如何因應各國管理法作簡單之報告，期望能對本國基轉植物之研發有所助益。

一、風險評估

目前對於轉基因植物在食用安全及對環境生態的衝擊皆是依循對化學物質或者農藥的風險評估方式。一般而言，風險評估包括物種特性鑑定(chemical or GMO characterization)，危害鑑定(hazard identification)、危害特性描述(hazard characterization)、劑量 - 反應評估(dose-response assessment)、暴露評估(exposure assessment)以及風險描述(risk characterization)等建立在科學基礎上的評估過程^(22, 36, 37)。

關於轉基因植物及其產品食用安全之風險評估根據“實質同等性(substantial equivalence)”的原則，也就是從毒理學及營養學觀點探討“轉基因植物及相關產品”與“非轉殖母本植物及相關產品”間之差異性，整個風險評估的簡單流程如圖 1.⁽³⁴⁾，除不同植物關鍵營養成分分析項目尚無國際通則外，包括毒理學毒性測試方法及過敏性測試皆已有國際公認之試驗規範可循。轉基因植物對環境生態之風險評估流程大致相同，但是其困難度及複雜性相對較高，最主要的原因是牽涉到地域性之差異。Kjellsson⁽³⁶⁾等學者依據化學物質(如農藥)的生態毒理評估方式，建議轉基因植物之生態風險評估流程如圖 2.，在危害鑑定(hazard identification)的部分即考量了轉基因植物所欲引入環境的地域性因素，包括棲息地類別、氣候、土壤、生物多樣性、植生密度及自然環境生物間交互作用的過程(如競爭作用、授粉作用)等。完成風險評估後則是進行風險描述(risk characterization or risk estimation)，其主要目的在對人體健康或生態環境的已知或潛在不良效應的發生可能性和嚴重程度進行定性和/或定量的估計，其中也包括伴隨的不確定性(uncertainty)^(36, 42)。

二、風險管理(risk management)

風險管理是根據風險評估的結果，斟酌權衡各種可供選擇的政策，徵求有關各方之意見，考慮保護消費者健康和促進公平貿易的相關因素，並且在需要時選擇和實施適當的防止、控制和監測方案，包括規章管理措施的過程，最終目的是降低風險的發生。因此風險管理包括五個部分：確認風險概況(風險評價)以確定安全問題等級和優先次序、選擇有效且技術可行的風險管理方案、管理措施的執行、預防、監控和審議^(36, 42, 46)。

三、管理法對貿易之衝擊

2000 年所簽訂的「生物多樣性公約」之「卡塔赫納生物安全議定書」(Cartagena protocol on biosafety to the convention on biological diversity) 適用於活修飾生物(LMO, living modified organism 指任何具有憑藉現代生物技術獲得的遺傳材料新異組和的活生物體)的跨國界遷移，並允許進口國家對貿易進行限制，以便排除對生物多樣性造成的不良後果⁽¹⁹⁾。“議定書”制定的初衷是要求出口國提供有關釋放含活修飾生物的產品的建議，並在出口前事先徵得進口國的同意。因此在議定書第 7-10 條是有關於預先通知協定的定義即決定流程等(AIA, advance informed agreement)，第 15 條「風險評估」則關於以科學和透明的方式並根據國際相關準則進行風險評估，而第 16 條「風險管理」即賦予締約方制定並保持適宜的機制、措施和戰略，用以制約、管理和控制在本議定書風險評估條款中指明的、因改生活生物體的使用、處理和越境轉移而構成的各種風險^(10, 19)。2003 年農糧組織在曼谷之糧食和農業生物風險管理技術磋商會議進一步對「生物安全性(biosafety)」的風險評估及風險管理之定義、涵蓋範圍及考量事項等作更明確之說明，並將其導入為生物安全(biosecurity)的一環^(25, 26)。

因此在卡塔赫納生物安全議定書之原則下各國所訂定關於轉基因生物的相關風險管理法規，包括預先通知協定、風險評估、風險管理等則成為未來轉基因生物及相關產品進入潛在市場的貿易障礙^(3, 6, 7)。以中國大陸為例，關於轉基因生物之相關管理辦法包括「農業轉基因生物安全評價管理辦法」、「農業轉基因生物標識管理辦法」、「農業生物基因工程安全管理實施辦法」及「農業轉基因生物進口安全管理辦法」等，而在「農業轉基因生物安全評價管理辦法」中另明訂轉基因植物、動物及微生物安全評價所需考量的之相關資料及詳細試驗方案等。這些規定令美國每年向中國出口價值 10 億美元的大豆遭遇到困難，因為出口的大豆中約有 70% 是轉基因產品。不僅如此，問題的關鍵在於，轉基因大豆的檢驗需要在出口目的地進行，而不是在出發地進行。這些都是對轉基因農產品的一種技術性管理規定，但對出口國家卻是一種技術性的貿易壁壘。

四、因應對策

目前我國尚未正式准許基因轉殖植物之商業化種植，為因應國內研究人員的各種生物技術成果即將推廣，更由於加入 WTO 後可能要面對外國基因轉殖生物的大量進口，因此必須要有各項的相關風險管理法規準備因應，以避免淪為生物科技大國的傾銷區，並導致國際貿易障礙或國內農民及消費者的損失⁽⁶⁾。

我國目前針對轉基因生物及相關產品之管理法案主要包括「基因轉移植物田間試驗管理規範」、「基因轉移植物委託田間試驗作業要點」、「基因重組實驗守則」、「基因改良食品安全評估辦法草案」、「基因改造黃豆及玉米為原料之食品標示事宜」等，因此根據法案及國際通則進一步製備各階段試驗之

詳細試驗規範及標準操作手冊是亟需開展之重點(製備各階段試驗之試驗規範及標準操作手冊)。此外，基因轉殖植物(或其他活修飾生物)釋放增加的結果可能是對環境無意識的不良影響，包括對本地動物區及植物區系的破壞，因此對經准許釋放種植或商業化的轉基因植物應有後續追蹤的機制，建立技術監測體系以更確定不會對生物多樣性及人類健康產生不良的後果^(39, 42)。

風險管理及風險評估技術人才的培養：積極培養專業的風險管理及風險評估技術人才，區分風險管理和風險評估的職能，可確保風險評估過程的科學完整性，並減少風險評估和風險管理間之利益衝突⁽²⁶⁾。

風險交流(risk communication)管道的建立：風險情況交流的網絡應包括在風險評估及風險管理的過程中所有利益相關的人或團體，包括開發基轉生物的業界代表、消費者組織、教育及研究機構、管理機構等^(26, 42)。

選擇風險評估資料需求較少之轉殖植物：目前世界重要的糧食或經濟作物包括玉米、大豆、油菜及棉花等皆已成為歐美國家專利的基因轉殖植物，其他國家少有競爭的空間；以日本為例，已商業化的基因轉殖作物大多數為國外企業開發的產品，日本國內研究的轉基因植物主要集中在水稻、黃瓜、番茄、甜瓜等，除了食用作物之外，應用轉基因技術於花卉育種上則取得較大的突破，育成了變色的康乃馨新品種，並於 1999 年實現商業化⁽¹⁾。因此如何透過整合評估選擇出適合的植物作為研發對象有利於我國的競爭力，這其中風險評估資料需求較少之轉殖植物可列為優先之考量。

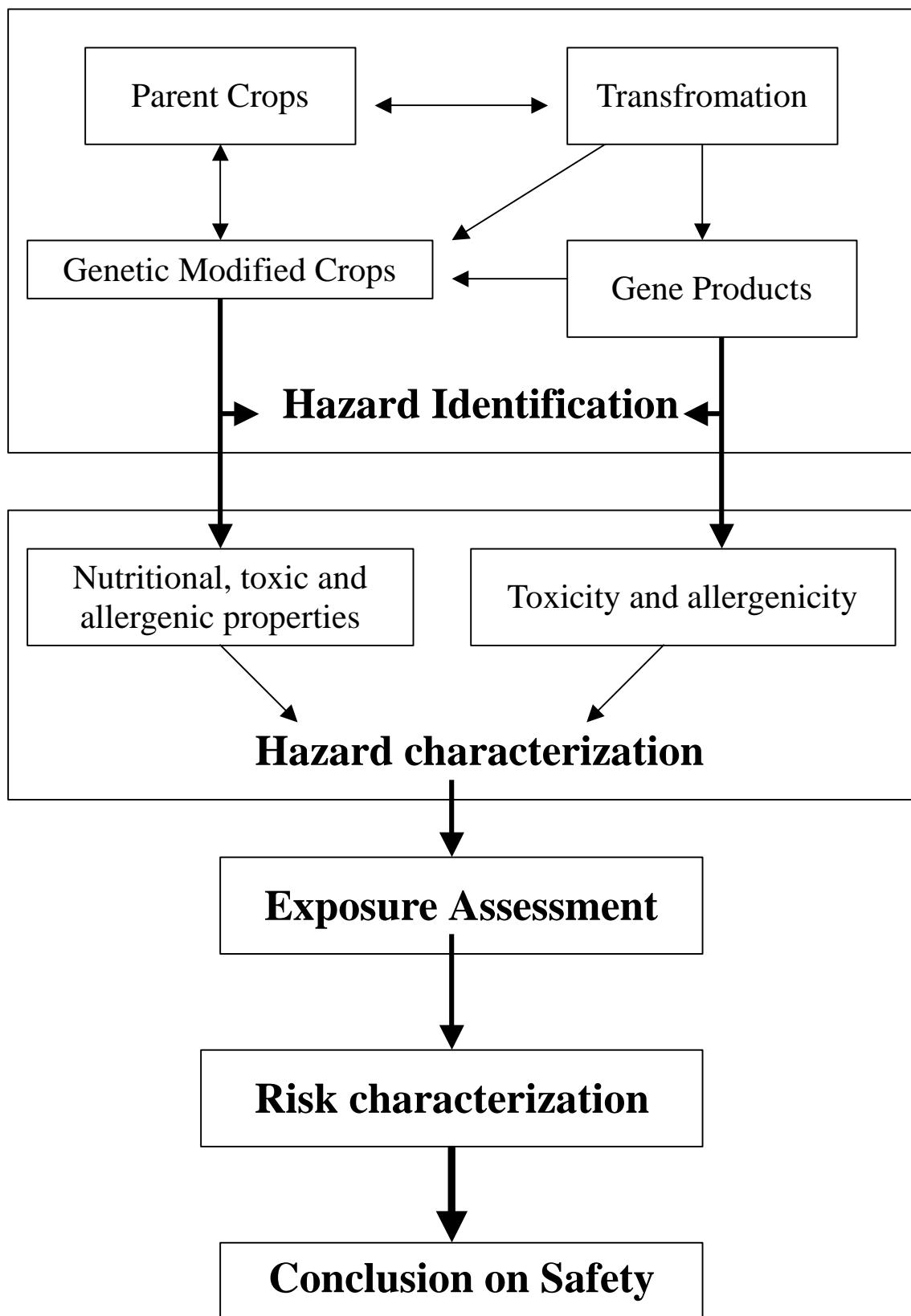


圖1. 轉基因作物風險評估流程。

Fig. 1. Risk assessment process for genetically modified crops (from Knudsen⁽³⁷⁾).

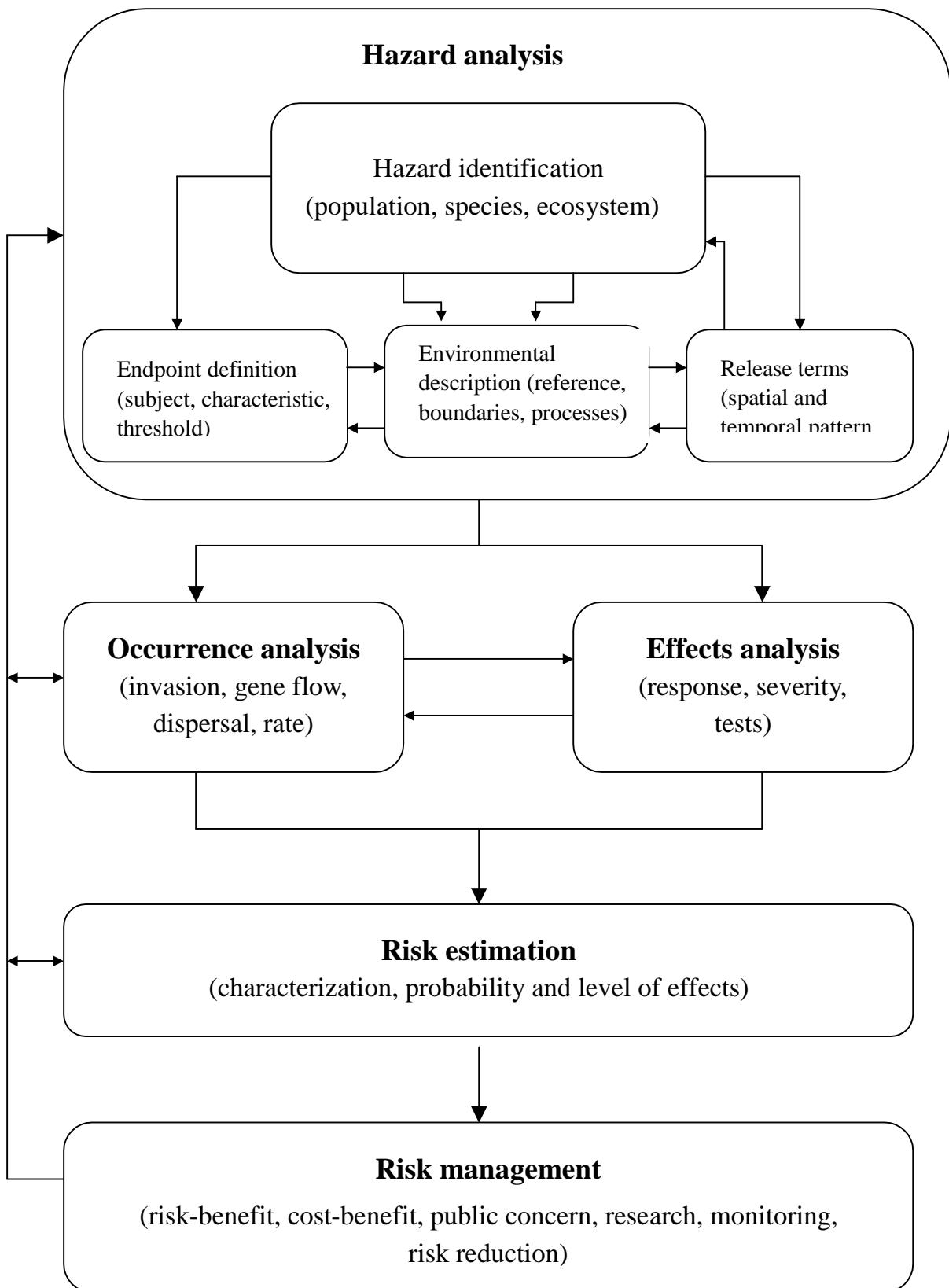


圖2. 轉基因植物之生態風險評估流程。

Fig. 2. Stages in ecological risk assessment (from Kjellsson⁽³⁶⁾).

引用文獻

1. 中國科技信息網。2001。日本轉基因作物的研究現狀及發展趨勢。
(<http://www.chinainfo.gov.cn/ChinaInfo2/ViewInfoTex.jsp?infoid=23675> 2003/03)
2. 王國英。2003。轉基因植物的安全性評價。
(http://www.monsanto.com.cn/bio_forum/expert_viewport/aviewport_009.htm 2003/03)
3. 古德業。2000。各主要國家及經貿組織對基因改造產品(GMO)之管理現況。第47-55頁。基因轉殖生物相關議題研討會論文集。中國農業化學會印。台北。
4. 吳明哲、鄭昭和。2001。簡介我國基因轉移植物田間試驗相關管理規範。農政與農情 108:32。
5. 陳富永。1993。胡瓜嵌紋病毒鞘蛋白基因及番荔枝病毒核鞘蛋白基因轉型植物之構築。中興大學植物病理研究所碩士論文。76頁。台中。
6. 經濟部國貿局。1999。引當前生物科技(Biotechnology)於食品工業之應用-基因轉殖作物問題之探討。
(http://www.moeaboft.gov.tw/global_org/APEC/apec_65.htm 2003/02)
7. 經濟部國貿局。2001。生物安全議定書規範重點。
(http://www.trade.gov.tw/impt_issue/impt_8/Env-16.htm 2003/02)
8. 葉錫東。2000。基因工程作物在植物保護之應用。科學發展月刊 28 : 257-266。
9. 蔡奇助、曾東海、王強生。2002。基因工程與作物品種改良。亞熱帶農作物產業之研究與發展研討會論文集。高雄。166頁。
10. 鄭昭和。2000。卡塔赫那生物安全議定書與國內相關規範簡介。第39-46頁。基因轉殖生物相關議題研討會論文集。中國農業化學會印。台北。
11. Aaziz, R., and Tepfer, M. 1999. Recombination in RNA viruses and in virus-resistant transgenic plants. *J. General Virology* 80: 1339-1346.
12. Aaziz, R., Salánki, K., Balázs, E., Jacquemond, M., and Tepfer, M. 2000. Strategies for detection of recombination in virus-infected plants expressing a viral transgene, pp. 189-196 In: Schiemann, J. ed. 5th International Symposium, The biosafety results of field tests of genetically modified plants and microorganisms. September 6-10, 1998. Berlin, Germany.
13. AGBIOS. 2003a. Crop database. In: Essential biosafety.
(<http://www.essentialbiosafety.info/dbase.php>. 2003/02)
14. AGBIOS. 2003b. Secondary and non-target adverse effects. In: Mon 810 environmental risk assessment case study. (<http://www.agbios.com/cstudies.php?book=ESA&ev=MON810&chapter=Preface>. 2003/03)
15. Ammann, K., Jacot, Y., and Mazyad, P. R. A. 2001. Safety of Genetically Engineered Plants: an Ecological Risk Assessment of Vertical Gene Flow. pp. 60-87. In: Custers, R. ed. Safety of Genetically Engineered Crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium.
16. ANZFA. 2001. Amending Standard A18/Standard 1.5.2 – Food Produced Using Gene Technology (Information for Applicants). Australia New Zealand Food Authority Edition. 36 pp.
17. Beachy, R. N. 1997. Mechanisms and applications of pathogen-derived resistance in transgenic plants. *Plant Biotechnology* 8: 215-220.
18. Biotechnology and GMOs. 2002. Environmental releases of GMOs. In: Deliberate field trials. (<http://biotech.jrc.it/deliberate/taxonomy.asp> 2003/03)

19. CBD. 2003. Cartagena protocol on biosafety to the convention on biological diversity. (<http://www.biodiv.org/biosafety/protocol.asp> 2003/03)
20. Christian, K., Christian, D., Gösta, K., Beate, S., and Morten, S. 1999. Ecological Risk Assessment of Genetically Modified Higher Plants (GMHP) Identification of Data Needs. NERI Technical Report, No. 303 Ministry of Environment and Energy National Environmental Research Institute Publisher, Silkeborg, DK. 35pp.
21. Eastham, K., and Sweet, J. 2002. Genetically modified organisms (GMOs) : The significance of gene flow through pollen transfer. Environmental issue report No 28. European Environment Agency, Copenhagen, DK. 75pp.
22. EPA. 1996. Proposed Guidelines for Ecological Risk Assessment. EPA/630/R-95/002B. Washington, DC, USA.
23. EPA. 2001. Biopesticides Registration Action Document - *Bacillus thuringiensis* Plant-Incorporated Protectants. (<http://www.epa.gov/pesticides/biopesticides/pips/bt Brad.htm> 2003/03)
24. EUROPA. Virus-resistant transgenic plants: ecological impact of gene flow (QLK3-2000-00361). 2003. Plants EC research puts impact of GM plants to the test. (<http://europa.eu.int/comm/research/quality-of-life/gmo/01-plants/01-10-project.html> 2003/2)
25. FAO. 2002a. Technical consultation on biological risk management in food and agriculture Agenda item 3: Biological risk management in food and agriculture: scope and relevance. TC/BRM 03/2. 17pp.
26. FAO. 2002b. Technical consultation on biological risk management in food and agriculture Agenda item 4: Risk analysis in biological risk management for food and agriculture TC/BRM 03/4. 17pp.
27. FAO/WHO. 1995. Application of risk analysis to food standards issues. Report of the joint FAO/WHO expert consultation, Geneva, Switzerland. 43pp.
28. FAO/WHO. 2000. Safety aspects of genetically modified foods of plant origin. Report of a Joint FAO/WHO expert consultation, Geneva, Switzerland. 37pp.
29. FAO/WHO. 2001. Evaluation of allergenicity of genetically modified foods. Report of joint FAO/WHO expert consultation on foods derived from biotechnology. Rome, Italy. 29pp.
30. Greene, A., Allison, R. F. 1994. Recombination between viral RNA and transgenic plant transcripts. *Science* 263: 1423-1425.
31. ILSI. 1995. Guidelines on the safety assessment of novel foods. ILSI Europe Novel Food Task Force, Brussels, Belgium. 24pp.
32. Information Systems for Biotechnology. 2003. Databases of US and international field tests of GMOs. (<http://www.isb.vt.edu>. 2003/02)
33. James, C. 2002. Global status of commercialized transgenic crops ISAAA Briefs No.27. Ithaca, NY. 37pp.
34. Johnsen, M. G., Jørgensen, F., Pedersen, L. H., and Stougaard, P. 2000. Transfer of DNA from genetically modified organisms (GMOs). A review, on present scientific achievements. Biotechnological Institute Kogle Allé 2 DK-2970 Hørsholm. 78pp
35. Kinderlehrer, J. 2001. Effects on non-target organisms of the release of genetically modified crops into the environment. pp. 88-107. In: Custers, R. ed. Safety of genetically engineered crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium.

36. Kjellsson, G., Simmonsen, V., and Ammann, K. 1997. Methods for risk assessment of transgenic plants. II. Pollination, gene-transfer and population impacts. Basel, Birkhauser Verlag. 308pp.

37. Knudsen, I. 2002. Food safety assessment strategies on genetically modified food crops. (http://www.gruene-gentechnik.de/dgg/Doku_Fachtagung_Knudsen_PPP.pdf. 2003/03)

38. MoRST(The Ministry of Research, Science & Technology, New Zealand). 2001. Horizontal Gene Transfer (HGT) – A Quick Guide. (<http://www.morst.govt.nz/uploadedfiles/Biotechnology/hgt.pdf> 2003/02)

39. National Research Council. 2002. Environmental effects of transgenic plants: the scope and adequacy of regulation. Washington, DC: National Academy Press. 320pp. (<http://books.nap.edu/books/0309082633/html/192.html> 2003/2)

40. Nielsen, K.M., Bones, A, M., Smalla, K. and van Elsas, J.D. 1998. Horizontal gene transfer from transgenic plants to terrestrial bacteria. a rare event? *FEMS Microbiol. Rev.* 22: 79-103.

41. OECD. 1993. Safety evaluation of foods derived by modern biotechnology, concepts and principles. Organisation for Economic Cooperation and Development, Paris, France. 74pp.

42. OGTR. 2002. Risk analysis framework for licence applications to the office of the gene technology regulator. Australia (<http://www.ogtr.gov.au/pdf/public/raffinal.pdf> 2003/2)

43. Parker, I. M., and Kareiva, P. 1996. Assessing the risk of invasion for genetically engineered plants: acceptable evidence and reasonable doubts. *Biological Conservation* 78: 193-203.

44. Pedersen, J., Eriksen, F. D., and Knudsen, I. 2001. Toxicity and food safety of genetically engineered crops. pp. 27-59. In: Custers, R. ed. Safety of genetically engineered crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium.

45. Penninks, A., Knippels, L., and Houben, G. 2001. Allergenicity of foods derived from genetically modified organisms. pp. 108-134. In: Custers, R. ed. Safety of Genetically engineered crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium.

46. Rissler, J., and Mellon, M. 1996. The ecological risks of engineered crops. The MIT press Cambridge, Massachusetts, London, England. 168pp.

47. Taylor, S. T., and Hefle, S. L. 2001. Food allergies and other food sensitivities a publication of the institute of food technologists' expert panel on food safety and nutrition. *Food Technology* 55: 68-83.

48. Wintermantel, W.M., and Schoelz, J. E. 1996. Isolation of recombinant viruses between cauliflower mosaic virus and a viral gene in transgenic plants under conditions of moderate selection pressure. *Virology* 223: 156-164.

Experiments for studies on the management of the bio-safety of transgenic plants

Shyu, T. H., Lee, Y. H., and Li, G. C.* 2003

Taiwan Agricultural Chemicals and Toxic Substances Research Institute,
Council of Agriculture, Wufeng, Taichung, Taiwan 413, ROC

ABSTRACT

In recent years, the cultivation acreage of genetically modified (GM) crops has sharply increased. To ensure the safety of GM plants, most developed and some developing countries have established criteria to manage the risk before those products are released to the environment and are consumed as foods. The criteria for the safety evaluation of transgenic plants contain 2 main aspects: the first is the safety of GM plants as foods, and the other is the impact of transgenic plants on the environment. Regardless of what kinds of safety evaluations are going to be carried out, the most important step is to fully understand the characterization of the GM plant and the function and mechanism of the transgenes. The concept of substantial equivalence is an important component of the safety evaluations of foods and food ingredients derived from GM plants. This concept embodies a science-based approach in which a GM food is compared to its existing appropriate counterpart. The approach is not intended to establish absolute safety, which is an unattainable goal for any food. Rather, the goal of this approach is to ensure that the food and any substances that have been introduced into the food as a result of genetic modification are as safe as its traditional counterpart. Main factors taken into account in the safety assessment include: the toxicity and allergenicity of foods derived from genetically engineered plants. The methodology for toxicological studies and existing chemical analytical methods for food quality control could be adopted to evaluate the safety of transgenic foods. Other countries commonly accept the data obtained from evaluations based on the international standard of "good laboratory practice". The second aspect concerns evaluation of the impacts of genetically modified plants on ecosystems. In order to reduce risks of environmental impacts of transgenic plants, there are 3 primary categories which might be considered: the weediness of transgenic plants and/or their filial generations, the transfer of transgenes to crop relatives (gene flow), and adverse effects of transgenic plants on non-target organisms. Different genetically engineered plants will present different problems depending on the new genes are inserted, the characteristics of the parent crops, and the locales in which they are grown. For future risk assessments, a rational stepwise approach is necessary. First of all, knowledge of the crop and its wild relatives, knowledge of the biogeographical situation, and

knowledge of the transgene have to be taken into account. An impact analysis for examining the likely effects on non-target organisms should consider: (1) those species reliant on the crop itself, whether through using it for food or shelter; (2) those plants and animals that live within the field and which might be damaged if changes are made to the crop that modifies their habitat or their ability to survive; (3) plants and animals living in the field margin or hedges and walls, if the management of the crop modifies the size, extent, or susceptibility to herbicides and pesticides of this field area; and (4) those soils and soil organisms which may be affected by changes in plant varieties or management. According to the US-EPA suggestions, we can follow the guidelines concerning evaluation of the adverse effects on non-target organisms of biopesticides. For the risk assessment of the weediness of transgenic plants, it is necessary to understand the competition of transgenic plants with other members in the ecosystem before they are released to the environment. Those agronomic characterization studies usually have to be carried out under controlled conditions or in semi-field conditions. For the risk assessment of the transfer of transgenes to crop relatives (gene flow), it is necessary to determine whether there are any close relatives in the environment in which the transgenic plants are going to be released and the possibility of transfer of inserted genes by any form of vector. The principles and procedures for ecological risk assessment of transgenic plants are based on experience for predictive risk assessment of chemicals or agrochemicals. Five stages in the ecological risk assessment should be considered. (1) Characterization of transgenic plant and the inserted gene. General information on the receiver plant and the inserted trait should be collected, the information evaluated, and additional data needs of the receiver plant should be identified. (2) Hazard identification. This stage in a predictive risk assessment of transgenic plants is to identify and analyze the hazards involved including measurement variables (i.e., endpoint definition), description of the environment, and the terms for the release. The main questions are: What is at risk in the environment? And how should the effects be defined? If possible, it is necessary to draw up standards for risk assessment. (3) Analysis of occurrence and effect. For transgenic plants, the concept of "occurrence" could refer to the product of relevant probability factors, e.g., the probability for gene transfer, hybridization, and dispersal of plants into new areas over time. Studies of effects in ecological risk assessment have mainly been done at the species level, but tests of effects at population and ecosystem levels are needed and would be of perhaps greater use. (4) Risk estimation. Estimates of risks can be derived from data on occurrence probabilities and data from tests on effects of the release. Hence, occurrence probabilities for different scenarios (e.g., gene-flow, invasion) and level of effects should be given. (5) Risk management. Risk management involves the decision making which attempts to minimize the

undesired effects of a hazard. It involves political issues as well as practical precautions and restoration measures. Valuation of the ecological resources at risk depends on different considerations, which must be balanced. Analytic procedures such as cost-benefit may be included. Testing of the transgenic crop should follow a step-by-step procedure evaluating data of the first phase before continuing into the next phase. The more risky the crop and/or the transgene, the more stringent the testing scheme should be before the transgenic crop can be allowed to be grown commercially on a large scale. But in the end, 1 dilemma will remain: even after the most-careful risk assessment process, only a mass release will bring all effects to the surface. Small-scale field trials do not allow investigation of the ecological risks of widespread commercialization. Therefore in order to achieve sustainability in cultivating transgenic crops, the focus should be on long-term monitoring of several years in the same field where the transgenic crop is planted. Risk assessments of the impacts of transgenic plants on the ecosystem should be carried out on a case-by-case basis depending on the eco-environment to which the plant is going to be released. For the time being, standard operating procedures (SOPs) must urgently be established for the risk assessment of transgenic plants, specialists must be trained concerning risk assessment and risk management, and appropriate communication channels among researchers should be strengthened. Finally, determining how to select target plants for transgenic studies to avoid complications of regulatory requirements is also important work.

(Key words: genetically modified organisms, risk assessment, safety assessment, substantial equivalence, gene flow, weediness)

* Corresponding author. E-mail : gcli@tactri.gov.tw