公牛精液保存及添加奈米硒對精子品質的影響研究

趙俊炫 蕭振文

農業部畜產試驗所北區分所

本研究進行公牛精液的採集、冷凍保存處理,並探討奈米硒濃度對精液品質的影響。使用Biladyl-10% LDL精液稀釋液進行凍存,並以iSperm分析精子品質。新鮮精液的平均精子活力為85.6±5.7%,解凍後為56.1±6.5%;新鮮精液的前進活力為26.8±4.6%,解凍後為19.3±5.8%。平均路徑速度、平均曲線運動速度及平均直線運動速度在解凍後也有所下降。基因體分析顯示3頭種公牛具有優異遺傳特性,平均乳量基因體預測傳遞能力為976。於夏季高溫高濕氣候下,添加不同濃度奈米硒(0、1.0、2.0及4.0 ug/ml) 改善公牛精液品質。新鮮精液的活動精子比率為85.4±4.5%,解凍後的活動精子比率約下降3成,0 ug/ml奈米硒處理組的比率為54.3±4.9%,添加1 ug/ml奈米硒處理組顯示解凍後精子的平均曲線速度(129.1±22.1)、平均直線速度(53.8±10.8)及平均路徑速度(70.0±8.7)均有較佳表現,添加1 ug/ml奈米硒有助於精子解凍後的泳動能力。

表1. 三頭種公牛經基因體分析包含淨值、產乳量、體細胞分數、使用年限及體型指數PTA等重要性狀

Table 1. The genetic testing of a dairy bull includes important traits such as net merit, milk production, somatic cell count, production life and type index (PTA).

Bull ID	Birth	NM\$	Milk	SCS	PL	PTAT
14E2082309	10/07/2					
66	023	810	1,140	2.94	3.1	1.62
TWN14E208	05/09/2					
24M874	024	284	554	2.81	1.4	0.75
	07/07/2					
TWN14E208	024					
24M927		641	1,233	2.79	4.2	-0.07

表2. 公牛精液稀釋液添加奈米硒對解凍後精子活力分析

Table 2. Analysis of sperm motility after thawing by adding nano-selenium to bull semen diluent

		Post-thawed semen					
Item	Fresh semen	Se-NP, 0 ug/ml	Se-NP, 1 ug/ml	Se-NP, 2 ug/ml	Se-NP, 4 ug/ml		
Motility, %	85.4 ± 4.5% a	54.3 ± 4.9% b	53.6 ± 4.7% b	51.5 ± 3.9% b			
Progressive motility, %	27.3 ± 5.4% a			17.9 ± 3.5% bc	16.0 ± 3.5% ^c		
Velocity of curvilinear, VCL, μm/s	156.6 ± 18.8 ^a	100.7 ± 17.4 ^c	129.1 ± 22.1 b	94.2 ± 17.2 °	98.3 ± 14.9 °		
Velocity of average path, VAP, µm/s	88.4 ± 6.0 a			46.6± 6.0 c	47.3 ± 6.7 °		
Velocity of straight line, VSL, μm/s	78.7 ± 5.6 ^a	47.0 ± 6.8 bc	53.8 ± 10.8 ^b	42.7 ± 4.9 °	43.8 ± 4.4 °		

Study on the effects of bull semen preservation and nano-selenium addition on sperm quality

This study involved the collection and frozen storage of bull semen, and explored the effects of different concentrations of nano-selenium on semen quality. Using Biladyl-10% LDL semen extender for freezing. The sperm quality was analyzed using iSperm. The results showed that the average sperm motility of fresh semen was $85.6 \pm 5.7\%$, while post-thaw motility was $56.1 \pm 6.5\%$. The progressive motility of fresh semen was $26.8 \pm 4.6\%$, compared to $19.3 \pm 5.8\%$ post-thaw. The average path velocity, average curvilinear velocity, and average straight-line velocity also decreased after thawing. During the hot and humid summer season, this study investigated the improvement of bull semen quality by adding different concentrations of nano-selenium $(0, 1.0, 2.0, \text{ and } 4.0 \, \mu\text{g/ml})$. The motile sperm ratio of fresh semen was $85.4 \pm 4.5\%$, while the post-thaw motile sperm ratio dropped by about 30%. The motile sperm ratio of the control group was $54.3 \pm 4.9\%$, while the group treated with $1 \, \mu\text{g/ml}$ Se-NP showed better post-thaw performance, with an average curvilinear velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average path velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , an average straight-line velocity of 129.1 ± 22.1 , and 129.1 ± 22.1 , and