
不同屋頂型式鵝舍內鵝生長性能、血液學和微環境參數調查

蕭智彰 練慶儀 農業部畜產試驗所北區分所

前言

本研究旨在調查不同屋頂型式鵝舍內鵝 隻生長、血液學及微環境參數資料。

材料與方法

使用6週齡白羅曼鵝120隻,逢機分配 至對照組(非開放式鵝舍)及處理組 (屋頂型太陽能鵝舍),每欄10隻,公 母各3欄,每處理3重複。試驗期間鵝隻 每2週秤重1次,於13週齡進行採血, 並收集試驗期間舍內外溫濕度。

結果與討論

鵝隻體重在屋頂型太陽光電舍及非開放 式鵝舍間無顯著差異。飼養於屋頂型太 陽光電舍鵝隻之異嗜性白血球/淋巴球 (H/L) 之比值顯著較低(P<0.05)

,另其舍內、外平均環境溫度分別約 30°C及32°C,較非開放式鵝舍溫度低1 - 2°C。比較發電量和用電量,屋頂型式 太陽能鵝舍電力自給率為1,485%,113 年總發電量為25,000度,相當於減少二 氧化碳排放量12,500公噸。綜上所述, 屋頂型太陽光電舍飼養鵝隻對其生長性 能無負面影響,且具綠色發電及對鵝舍 降溫有正面影響。

表. 屋頂型太陽光電舍對鵝隻血液性狀之影響

ltem	Control groups ¹	Treatment groups ²
Monocytes +, (%)	680.9 ± 391.87	532.6 ± 311.7
Heterophils +, (%)	5,811.2 ± 1,605.5	4,991.3 ± 1,105.7
Lymphocytes +, (%)	2,814.9 ± 799.8	$3,412.7 \pm 965.2$
Eosinophils +, (%)	682.1 ± 449.1	886.3 ± 619.6
H/L [§] , (%)	2.3 ± 1.2 a	1.6 ± 0.7 b

^{*}Mean ± SD.

淨零減碳效益

減少 溫室氣體 排放量

減少二氧化碳

(CO₂) 排放量 光電鵝舍發電量替代燃煤發電量減少 (公噸CO₂e/年) (CO₂) 排放量約440公噸CO₂e/年。

燃煤與天然氣發1度電的碳排放量約為太陽能發電 的18.1倍與8.6倍,而平均每度太陽光電約可減排 0.5公斤二氧化碳,約可節省0.25公升燃油、0.37 公斤燃煤或0.165公斤燃氣。

a,b Means in the same row and at same weeks of age with different superscripts differ (P < 0.05).

¹ Control groups: indoor rearing goose house.

² Treatment groups: rooftop-type solar photovoltaic goose house.

^{3 §}H/L: Heterophils/Lymphocytes.