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Estimating Forest Net Primary Productivity Using
Two Seasonal SPOT Images

Chi-Chuan Cheng"”
[ Summary ]

This study aimed to apply remote sensing to estimate the forest net primary productivity (NPP)
of Nanzhuang National Forest in Taiwan. The research processes included calculating vegetation
indices from SPOT images of 2 seasons in 2003, estimating the fraction of photosynthetically
active radiation (FPAR) and photosynthetically active radiation absorbed by the different forest
types (APAR), estimating the NPP, and finally analyzing NPP variations from different seasons
and forest types. Furthermore, the shadow effect, simulation of the maximum light use efficiency
for different forest types, and the problem of image acquisition for NPP estimation in Taiwan were
also investigated. The results are as follows. Under the consideration of the shadow effect and
simulation of the maximum light use efficiency for different forest types, the NPP estimation on
the dry season image was 361.22 g C m™ yr' with shadow retention and 293.19 g C m” yr' with
shadow correction, while the wet season image was 545.07 g C m” yr' with shadow retention and
572.45 g C m” yr' with shadow correction. As for using dry- and wet-season images, NPP values
were 452.5 and 432.43 g C m” yr' with shadow retention and shadow correction, respectively. A
comparison between the estimated NPP and the field-measured carbon amount derived from forest
inventory data (i.e., 430 g C m” yr'') indicated that the NPP estimated from 2 seasonal images had
the best result because of the smallest bias. Meanwhile, the seasonal analysis of NPP variations
was significant in the study area. The majority of NPP accumulation was about 86% of the annual
NPP and was mainly distributed between April and October. In addition, we propose that among
the 3 shadow processes, shadow removal cannot be applied to estimate the NPP because a lower
FPAR was generated when estimating the FPAR due to the linear transformation of vegetation in-
dices. We concluded that remote sensing is a timely, effective, feasible, and large-scale approach
for estimating the forest NPP and provides the NPP for a spatiotemporal variation analysis. Mean-
while, the shadow effect and simulation of the maximum light use efficiency for forest types affect
the estimation of forest NPP. Therefore, their effects should be considered when applying SPOT
vegetation indices to estimate forest NPP. In addition, an alternative approach using seasonal im-
ages is also feasible to eliminate the problem with image acquisition in Taiwan.
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INTRODUCTION

Global climate change has been an issue
of growing concern since the end of the 20th
century. The increasing amount of carbon
dioxide is regarded as one of the important
factors accelerating global warming and
leading to global climate change. Therefore,
many countries signed the Kyoto Protocol
(KP) in 1997. The KP agreed that carbon se-
questration can reduce climate change, and
participating nations are required to estimate
their greenhouse gases and provide a national
greenhouse gas inventory report. Since then,

carbon sequestration has become an important
issue in terms of absorbing and storing carbon
dioxide. Meanwhile, forests play important
roles because they yield the greatest poten-
tial for reducing greenhouse gas emissions.
Several studies indicated that the combina-
tion of forest inventories and remote sensing
has become the main method for assessing
carbon amounts. Particularly, according to the
International Panel on Climate Change (IPCC)
Good Practice Guidance, remote sensing
is a useful technique for estimating carbon
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amounts on a large scale to verify national
land uses, land-use changes, and forestry
(LULUCEF).

As for estimating carbon amounts, several
methods have been proposed, including sam-
pling of ground biomass, flux towers, model
estimation, and remote sensing techniques.
Among these methods, remote sensing is an
effective and large-scale method for estimat-
ing net primary productivity (NPP) (Zhu
2005). Common approaches used in remote
sensing are regression models of forest stocks
and vegetation indices to estimate carbon
amounts (Monteith 1972, Wang 2010). Sev-
eral studies applied different scales of remote
sensing images to estimate the NPP and
analyze changes in NPP (Law and Waring
1994, Raymond and Hunt 1994, Goetz and
Prince 1996, Gower et al. 1999, Zhu 2005).
However, the shadow effect and simulation
of the maximum light use efficiency (&,,,) for
vegetation types must be considered when
estimating the NPP (Burgess et al. 1995, Zhu
et al. 20006). For example, the shadow effect
in high-relief areas affects the amounts of red
and infrared radiation reflected by the land
surface. Burgess et al. (1995) investigated
the shadow effect on AVHRR NDVI data
with a digital elevation model to simulate the
shadow effect. They found shadow errors of
as large as 13.5% at a 50-m resolution which
became smaller with an increasing pixel size;
for pixels of 1.1-km resolution, the error was
< 3%. Therefore, Burgess et al. (1995) con-
cluded that the fairly strong shadow effect
in high-resolution data is greatly reduced in
low-resolution data. In addition to the shadow
effect, the ¢, is also a key parameter for es-
timating NPP when applying remote sensing
data. However, many divergences still exist
as to its value with different vegetation types
(Potter et al. 1993, Field et al. 1995, Peng et
al. 2000, Zhu et al. 2006). Potter et al. (1993)
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and Field et al. (1995) took the global ¢, to
be 0.389 g C MI"'. Peng et al. (2000) adopted
1.25 g C MJ" to estimate the spatial distribu-
tion of the ¢, in Guangdong Province, China
used in the CASA
model (0.389 g C MJ™") was lower compared
to that of Guangdong vegetation. For this rea-
son, Zhu et al. (2006) simulated the ¢
some typical vegetation types in China based
on NOAA/AVHRR remote sensing data and
field-observed NPP data. From previous re-

and indicated the ¢

max

for

‘max

search, values of the ¢, for different vegeta-
tion types were obviously inconsistent.

Due to the importance of forest NPP and
the potential use of remote sensing, this study
applied SPOT images to estimate the NPP of
Nanzhuang National Forest in Taiwan and

also examined the shadow effect and ¢_, for

max
estimating NPP. However, another problem
also exists in Taiwan, that is, monthly images
are needed to estimate the annual NPP when
using remote sensing. In fact, it is difficult to
acquire monthly SPOT images in Taiwan due
to the environmental characteristics. There-
fore, seasonal SPOT images were applied in
this study to investigate their feasibility for
NPP estimation.

MATERIALS AND METHODS

Study area

Nanzhuang National Forest, which be-
longs to the Taiwan Forest Bureau, is located
in northern Taiwan (Fig. 1). The area covers
about 9129.36 ha, and the elevation ranges
145~2610 m. The mean temperature ranges
15.1~28.8°C. The mean annual rainfall is
about 1782.7 mm yr'.

Materials
Remote sensing data

As mentioned previously, it is difficult
to acquire monthly SPOT images for NPP
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Fig. 1. Study area and forest type map including natural hardwood mixed type (NHMT),
conifer type (CT), conifer mixed type (CMT), conifer-hardwood mixed type (CHMT),
hardwood mixed type (HMT). Black points denote the 55 field plots.

estimation in Taiwan. However, there are dis-
tinct dry and wet seasons. Therefore, accord-
ing to the meteorological data including total
monthly precipitation, mean monthly tem-
perature, and total monthly solar radiation, 2
clear SPOT-4 images acquired on 2003 Janu-
ary 17 and 2003 June 28 were selected from
the Center for Space and Remote Sensing
Research (CSRSR), National Central Univer-
sity, Jhongli City, Taiwan. The SPOT images
included green (0.5~0.59 pum), red (0.61~0.68
um), infrared bands (0.79~0.89 pum), and
short-wave infrared (SWIR, 1.58~1.75 um)
with a 20 X20-m spatial resolution, and have
precision correction with ground control
points and digital terrain model (DTM). To
examine the feasibility of seasonal images for
NPP estimation in this study, the 2 available
SPOT images were assumed to be represen-
tative of the dry (2003 January 17) and wet
seasons (2003 June 28) according to the me-
teorological data.

Meteorological data

To acquire meteorological data of the
study area in 2003, total monthly precipita-
tion, mean monthly temperature, and total
monthly solar radiation in Taiwan were
provided by the Taiwan Typhoon and Flood
Research Institute and derived from 392, 122,
and 22 meteorological stations, respectively.
All data were compiled with missing and sus-
picious data, and then interpolated at the same
scale with the SPOT images using the geo-
statistical analysis of ArcGIS 10.2 software
(Environmental System Research Institute,
Inc.). After that, 3 kinds of monthly meteoro-
logical data of the Nanzhuang National Forest
were further extracted from Taiwan’s monthly
meteorological data.

Forest type map, field inventory data of plots,
and field-measured carbon amounts

The forest type map (Fig. 1) and field
inventory data of Nanzhuang National Forest
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were collected from the Taiwan Forest Bu-
reau. The forest type map is classified into 5
types: natural hardwood mixed type (NHMT),
conifer type (CT), conifer mixed type (CMT),
conifer-hardwood mixed type (CHMT), and
hardwood mixed type (HMT). The field in-
ventory data included 55 plots. The relation-
ship between the forest type and number of
plots was as follows: NHMT=18, CT=10,
CMT=15, CHMT=8, and HMT=4. As for the
plot size, there were 3 kinds of rectangular
plot sizes: 40 X25 m (0.1 ha), 28.4X17.6 m
(0.05 ha), and 17.9X 11.2 m (0.02 ha). Each
plot had been inventoried in 1998 and 2003.
The inventory data included tree species, di-
ameter at breast (DBH), and tree height (H).
As for the field-measured carbon amount
based on forest inventory data, the Timber
Resources Inventory Projection System
(TRIPS) established by the Taiwan Forest Bu-
reau was used. There are 3 steps as follows. (1)
Calculation of forest stocks was based on for-
est inventory data in 1998 and 2003. Only 52
field plots were used to calculate forest stock
due to 3 missing plots in 1998. The forest
stock of each plot was first calculated using
the TRIPS and a stock equation of the Taiwan
Forest Bureau. Then this was converted from

255

plot size into per hectare, and the forest stock
was further estimated for each forest type. (2)
The forest carbon stock for each forest type
was then estimated using the calculated forest
stock by the following equation (1):

C =V gomma X EFX DX CF, (1)
where C is the carbon stock per hectare,
v

the expansion factor from stem stock to tree
stock, D is the density from forest stock to
biomass, and CF is the carbon fraction.

is the forest stock per hectare, EF is

stem/ha

In equation (1), a couple of parameters
refer to the IPCC (Wang 2007). For example,
the expansion factor (EF) was assumed to be
1.65 while the carbon fraction (CF) was 0.5.
As for the parameter of density (D), 5 forest
types (i.e., NHMT, CT, CMT, CHMT, and
HMT) were assumed to be 0.49, 0.44, 0.44,
0.46, and 0.49, respectively (Wang 2010). (3)
The field carbon amount of 2003 was finally
measured according to the estimated for-
est carbon stocks in 1998 and 2003. Table 1
shows the results of field-measured carbon
amounts for 2003.

Methodology
Figure 2 is a flow chart for NPP estima-
tion based on SPOT vegetation indices. The

Table 1. Field-measured carbon amount of the Nanzhuang National Forest in 2003

according to the inventory data of field plots

Forest type NHMT CT CMT CHMT HMT  Study area
Area (ha) 5008.13 1663.67  927.13 67729  853.14 9129.36
No. of plots 18 9 14 8 3 52
Forest stock in 1998 (m’ ha™) 236.83  670.09  193.55 238.41 205.01 308.78
Forest stock in 2003 (m’ ha™) 28224 73483 29437 283.66  256.86 390.98

Carbon stock in 1998 (Cm?) 9991 20523 5426 8636 10546 11024
Carbon stock in 2003 (g C m?®) 12030 22478 8218 11002 12841 13314
Carbon stock in 5 yrs (g C m”) 2039 1955 2792 2366 2295 2290
Carbon amount (g C m™ yr') 408 391 558 473 459 430
Total carbon (10° g C yr') 20433.17 6504.95 5173.39  3203.58 391591 39231.00
NHMT, natural hardwood mixed type; CT, conifer type; CMT, conifer mixed type; CHMT, conifer-
hardwood mixed type; HMT, hardwood mixed type.




Cheng—Estimating forest net primary productivity

1. Calculation of vegetation indices
NIR (x, 1) — RED (x, )

NDVI( )= iR (e 1) + RED (x. 1)
! |
SR (x. 1) = [1 + NDVI (x, t)}
1= NDVI (x, 1)
! |

/ 2. Estimation of FPAR and APAR
(NDVI (x, 1y~ NDVI__)x(FPAR _— FPAR )

Z,min. min. +FPAR ‘
(novi,, - NDVI,)

i,min

(SR (x, )= SR__)x(FPAR _—FPAR )
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FPAR (x, 1) = aFPAR,

! g

APAR (x, )= SOL (x, {) X FPAR (x, £) X 0.5

4
3. Estimation of NPP

NPP (x, f) = APAR (x, f) X & (x, ©)

4

4. Analysis of NPP variation from
different seasons and forest types

FPAR, (x, 1) =

FPARg, (x, 1) = + FPAR

min

+ (1 — 0)FPAR,,

\_ /

Fig. 2. Flow chart for estimating forest net primary productivity (NPP).
(NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio Vegetation Index; FPAR,
Fraction of Photosynthetically Active Radiation; APAR, Absorbed Photosynthetically Active

Radiation; SOL, Solar Radiation)

research process included calculating vegeta-
tion indices from the SPOT image, estimat-
ing the fraction of photosynthetically active
radiation (FPAR) and photosynthetically
active radiation absorbed (APAR) by forest
types, estimating NPP, and finally analyzing
NPP variations in different seasons and forest
types. In addition, common problems occur-
ring in Taiwan were also investigated. For ex-

ample, the shadow effect, ¢, for forest types,

max

and image acquisition on the estimation of
forest NPP were examined.

Calculation of the vegetation index from
SPOT images with shadow processes

The Normalized Difference Vegetation
Index (NDVI) and Simple Ratio Vegetation
Index (SR) were used in this study, because
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both indices are primary parameters for es-
timating the FPAR (Los et al. 1994). The
NDVI is commonly applied to vegetation
indices. This was calculated with the near-
infrared (NIR) and red (RED) bands as shown
in equation (2). The NDVI range is between
-1 and 1, meaning there is high-density vege-
tation when it is close to 1. On the other hand,
the land-use type is non-vegetation when the
NDVI is <0.
_ NIR (x, ) = RED (x, 1) , @)
NIR (x, ) + RED (x, 1)’

where x is a pixel in the SPOT image, and 7 is
the period of the image.

The SR was calculated by the NDVI as
in equation (3). The index represents the rich-

NDVI (x, #)

ness of vegetation, but is affected by region
and seasonality.
_[1+NDVI (x, 1)

1 —NDVI (x, 1) |

According to a previous report (Zhou et

SR (x, 1) 3)

al. 2009), vegetation indices are affected by
image shadows. To deal with this problem in
this study, a shadow map was first generated
by unsupervised classification under the ISO-
DATA (Iterative Self-Organizing Data Analy-
sis Technique) clustering method of ERDAS
IMAGINE software (Intergraph Corporation).
Then the shadow map with 55 field plots was
overlaid, and shadow processes were carried
out, such as shadow retention, shadow remov-
al, and shadow linear-correlation correction.
Equation (4) is the shadow linear-correlation
correction for adjusting the NDVT:

_ [Shadowy,]
D]Vstretch (NonShadOWs[))

Shadow,y) + NonShadowgp; 4
where DN,,,,,., and DN,
NDVI value with and without shadow cor-

X (DN,

hadow ~—

adow TEPTEsent the
rection, Shadowg, and NonShadowg, are the
standard deviations of NDVI in shadow and
non-shadow forestland, and Shadow,, and

257

NonShadow,, refer to the NDVI in shadow
and non-shadow forestland, respectively.

Estimations of FPAR and APAR with sea-
sonal images

According to previous research (Hatfield
et al. 1984, Sellers 1985), the relation be-
tween FPAR and NDVI is near-linear. There-
fore, the relation of FPAR and NDVI can be
used to estimate the FPAR of NDVI (i.e.,
FPAR,yy) if linearity is assumed. The equa-
tion between FPAR and NDVI is given by
FPARypy; (x, 1) =
(NDVI(x,t)— NDVI,,,.) X (FPAR,,,.— FPAR, )

(NDVI, jox — NDVI, i)
+ FPAR,;,; ®)
where FPAR . = 0.950 and FPAR,,, = 0.001
are based on research by Hatfield et al. (1984)
and Sellers (1985). Both are independent of
vegetation types.

In addition to the above FPARypy;, LoOS
et al. (1994) and Field et al. (1995) also indi-
cated that the FPAR has a linear relationship
with the SR. The relation between the FPAR
and SR (i.e., FPARSR) is as in equation (6):
FPARg; (x, 1) =
(SR (x, t) — SR, i) X (FPAR .

(SR, pmax = SR, in)
+ FPAR,;,; (6)
where SR, .. and SR, respectively corre-
spond to the NDVI, . and NDVI, ..

To understand which model is suitable

min

— FPAR ;)

for estimating the FPAR, a comparison was
made between the FPAR,,; and FPAR; (Los
et al. 1994). Results indicated that a large bias
existed in the FPARpy;, while a smaller bias
occurred in the FPARg;. To resolve this prob-
lem, Los et al. (1994) took the model as in
equation (7), and found that the mean FPAR
estimated by the FPARypy, (equation 5) and
FPARg (equation 6) had the smallest bias.
Therefore, according to the research results of
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Los (1998), this study adopted equation (7) to
estimate the FPAR with a arbitrarily set to 0.5:
FPAR (x, t) = aFPARpy, (x, 1) + (1 — a)
FPAR & (x, 1). (7
After the FPAR estimation, the APAR
(MJ m™ mo™) was further estimated. It is the
product of PAR and FPAR at each monthly
time step. Based on the research of Zhu
(2005), the PAR equals half of the total solar
radiation (SOL) (MJ m™) in this study. The
APAR is then given by
APAR (x, t) = SOL (x, t) X FPAR (x, £) X0.5.
®)
As mentioned previously, the effect of
image acquisition on NPP estimations was
also investigated in this study. Therefore,
in addition to the FPAR of the dry and wet
seasons, this study also used the average of
the mean FPAR of the dry and wet seasons
as the FPAR ,ypraqe fOr estimating the APAR
and NPP. The objective was to investigate the
feasibility of using seasonal images for NPP
estimations.

Estimation of NPP
NPP (g C m” mo™) is the product of
APAR and the actual light use efficiency (¢) (g
C MJ™") at each monthly time step:
NPP (x, t) = APAR (x, ©) X ¢ (x, ). 9
As for the € in equation (9), Potter et al.
(1993) and Field et al. (1995) indicated the ¢
is affected by temperature and water. It is the
(g C MJ") and the scales
representing the availability of water (W)
and the suitability of temperature (T, T,), as
shown in equation (10):
e, ) =W, OXT,(x, ) XT,(x, 1) X &
(10)
Here, ¢,,, means ecach forest type has a
maximum light use efficiency in an ideal con-
dition. The water scalar is a function of the

product of the ¢

max

ratio of the estimated evapotranspiration (E)
to potential evapotranspiration (E,) at each
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monthly time step as shown in equation (11).
As for the calculation of W, this study re-
ferred to Zhu (2005) and adopted the concept
of regional estimated evapotranspiration and
regional potential evapotranspiration to calcu-
late the W:
W, 6)=05+05XE @, 0)/E,(x,1). (11)

The 2 temperature scalars represent the
regulation of plant growth by temperature.
The values of T, and T, were calculated by
equations (12) and (13):
T, (x,£)=0.8+0.02XT,, (x)—0.0005X

[T, (x)]" and (12)

1.184
1+exp[0.2 X (T, (1)~ 10-T(x,0)]}

" |
{1+exp[0.3 X (= T,,, (1)~ 10+ T(x,1)

Tz(x,t)={

)]}; (13)

where T

oy (x) is the mean monthly tempera-

ture with the maximum NDVI in a year.

Finally, equations (9) and (10) were
combined into the model as equation (14):
NPP (x, t) = APAR (x, ) X W (x, ) X T, (x, £) X

T, (x, ) X &px- (14)

The ¢, in equation (14) is a key param-
eter for estimating NPP in remote sensing ap-
plications. Related research about simulating
Emax TOr forest types is rare in Taiwan. There-
fore, this study proposed simulating the ¢,
according to the known parameters of APAR,
T,, T,, W, and field-measured carbon amount
(Table 1) in 2003. After the simulated &
was generated, equation (14) was applied to
estimate the monthly NPP of each forest type.
Finally, the monthly NPP was accumulated
into the annual NPP (g C m” yr") of the study
area in 2003.

max

Analysis of NPP variations from different
seasons and forest types

After estimating NPP, NPP variations
were further analyzed from different seasons
and forest types. The analysis from different
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seasons focused on the accumulation period
of NPP and variations among the 4 seasons
(i.e., spring, summer, autumn, and winter). As
for NPP variations in different forest types,
the analysis focused on spatial variations of 5
forest types (i.e., NHMT, CT, CMT, CHMT,
and HMT) under the processes of shadow re-
tention and shadow correction.

RESULTS AND DISCUSSION

Calculation of NDVI and SR with shad-
oW processes

Unsupervised classification using the
ISODATA clustering method of ERDAS
IMAGINE software was first applied to gen-
erate shadow maps for the dry (2003 January
17) and wet seasons (2003 June 28) as shown
in Fig. 3. The generated shadow map was
then overlaid onto the original SPOT image
for further interpretation of the shadow area.
The results indicated that the dry- and wet-
season images were covered by about 21.9
and 15.8% shadow areas, respectively.
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The effects of shadow processes (i.e.,
shadow retention, shadow removal, and
shadow linear-correlation correction) on the
NDVI and SR values were further investigat-
ed. Results are shown in Table 2. Clearly, the
mean NDVI or SR in the dry-season image
was smaller than that of the wet-season im-
age. However, from the shadow effect on the
NDVI or SR, shadow removal was larger than
shadow retention and very close to the shadow
correction for the dry- or wet-season image.

Estimation of the FPAR and APAR with
shadow processes and seasonal images
Similar to the process of NDVI and SR
calculation, dry- and wet-season images were
applied to estimate the mean FPAR with
shadow processes. The results are shown in
Table 3 and summarized as follows. (i) The
mean of FPAR,,y, was larger than that of
FPARg; regardless of the shadow process
or seasonal image. This differed from the
NDVI and SR (Table 2). (ii) The means of
FPARpyi, FPARg,, FPAR derived from the

0 2,000 4,000
— ) Meters

0 2,000 4,000
— — Meters

Fig. 3. SPOT images on 2003 January 17 (left) and 2003 June 28 (right). The green color

denotes shadow areas.
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Table 2. Means of Normalized Difference Vegetation Index (NDVI) and Simple Ratio
Vegetation Index (SR) with shadow processes and seasonal images

2003 January 17 (dry season)

2003 June 28 (wet season)

Indices Shadow Shadow Shadow Shadow Shadow Shadow
retention removal correction retention removal correction

Mean of NDVI 0.4207 0.4717 0.4727 0.5223 0.5466 0.5475

Mean of SR 2.6988 2.9432 2.9208 3.2483 3.4443 3.4520

Table 3. Mean fraction of photosynthetically active radiation (FPAR) with shadow

processes and seasonal images

2003 January 17 (dry season)

2003 June 28 (wet season)

Types Shadow Shadow Shadow Shadow Shadow Shadow
retention removal  correction retention removal  correction
Mean of FPARypy, 0.5160 0.4120 0.4122 0.7023 0.2917 0.7262
Mean of FPARg; 0.2432 0.2078 0.2042 0.4498 0.2024 0.4840
Mean of FPAR 0.3796 0.2088 0.3081 0.5762 0.2470 0.6051

NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio Vegetation Index.

dry-season image were smaller than those
derived from the wet-season image, except
for the process of shadow removal. (iii) The
means of FPARypy;, FPARg;, and FPAR with
shadow removal were pretty small compared
to shadow retention or shadow correction,
particularly in the wet-season image. The
reason was due to the linear transformation of
the FPAR.

From the third point of the above sum-
mary, there is an important implication, i.e,
the mean FPAR with shadow removal has to
be ignored, because the lower value of the
FPAR can affect estimations of the APAR
and NPP. Therefore, only 2 shadow processes
(i.e., shadow retention and shadow correc-
tion) were used to estimate the APAR. Table 4

shows results of the mean FPAR with 2 shad-
ow processes and seasonal images, including
the FPAR in the dry and wet seasons, and the
FPAR jygrage in the dry and wet seasons. Fig-
ure 4 shows the means of the monthly APAR
in dry- and wet-season images with shadow
retention and shadow correction.

Estimation of the NPP with shadow pro-
cesses and seasonal images
Simulation of the ¢, for forest types

The ¢,,, is a key parameter for estimat-
ing NPP derived from remote sensing data.
Therefore, before estimating the NPP, this
study applied equation (14) to simulate the
emax TOr each forest type of the study area ac-
cording to the following known parameters:

Table 4. Mean fraction of photosynthetically active radiation (FPAR) with 2 shadow

processes and seasonal images

Types

Shadow retention Shadow correction

Mean of FPAR in the dry season
Mean of FPAR in the wet season

Mean of FPAR ,yrage in the dry and wet seasons

0.3796 0.3081
0.5762 0.6051
0.4779 0.4566
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Fig. 4. Means of the monthly photosynthetically active radiation absorbed (APAR) by the
different forest types in the dry- and wet-season images with 2 shadow processes.

(1) calculated T,, T,, and W parameters from
meteorological data, (i) the estimated APAR
parameter from 2 seasonal images, and (iii)
the field-measured carbon amount from the
inventory data of field plots (Table 1). Table

5 shows the value of ¢,,, for each forest type

max

with shadow retention and shadow correction.

The results indicated the ¢, with shadow

correction was larger than that with shadow
retention. Therefore, this study applied the
Emax With shadow correction to estimate the
NPP because shadow correction was 1 objec-
tive of this study, and it really improved the

NDVI (Table 2).

NPP estimations with shadow processes and
seasonal images

Based on the known parameters of
APAR, T,, T,, and W and the simulated ¢,,,,
for each forest type, equation (14) was then
applied to estimate monthly and annual NPP
values with shadow processes and seasonal
images. Results are shown in Table 6 and
summarized as follows. First, annual NPP
values estimated from the dry-season image
were 361.22 ¢ C m” yr' with shadow reten-
tion and 293.19 ¢ C m” yr' with shadow cor-
rection. As for the wet-season image, annual
NPP values were 545.07 g C m™ yr' with

Table 5. Simulation of the maximum light use efficiency (¢,,,) with shadow retention and

shadow correction

Forest type &, with shadow retention (unit: g C MJ") ¢, with shadow correction (unit: g C MJ™)

NHMT 0.388
CT 0.386
CMT 0.555
CHMT 0.433
HMT 0.436

0.406
0.404
0.580
0.453
0.456

NHMT, natural hardwood mixed type; CT, conifer type; CMT, conifer mixed type; CHMT, conifer-

hardwood mixed type; HMT, hardwood mixed type.
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Table 6. Net primary productivity (NPP) in 2003 with shadow processes and seasonal

images
Dry-season image Wet-season image Dry- agd wet-
2 2 4 season images
Month (gCm™yr) (gCm™yr) (@Cm?yr)
Shadow Shadow Shadow Shadow Shadow Shadow
retention correction retention correction retention correction
January 7.91 6.39 11.84 12.44 9.84 9.40
February 10.09 8.15 15.14 15.91 12.58 12.02
March 15.90 12.87 23.89 25.10 19.84 18.96
April 37.78 30.64 56.93 59.80 47.26 45.17
May 34.05 27.62 51.40 53.98 42.68 40.78
June 48.53 39.42 73.20 76.86 60.75 58.06
July 50.45 40.93 76.19 80.02 63.26 60.45
August 53.79 43.68 81.20 85.27 67.40 64.41
September 60.09 48.96 90.90 95.41 75.39 72.05
October 25.89 20.97 39.15 41.14 32.54 31.09
November 9.87 8.00 14.92 15.68 12.40 11.85
December 6.88 5.55 10.32 10.84 8.57 8.19
Annual NPP 361.22 293.19 545.07 572.45 452.50 432.43

shadow retention and 572.45 g C m” yr' with
shadow correction. Second, annual NPP val-
ues estimated from the dry- and wet-season
images were 452.5 ¢ C m” yr' with shadow
retention and 432.43 g C m” yr' with shadow
correction.

To investigate if the 2 seasonal images
were preferable over the 1 season image, a
comparison was made between the annual
NPP in Table 6 and the field-measured car-
bon amount (i.e., 430 g C m” yr') in Table 1.
Results indicates that a large bias existed in
the 1- season image when compared to 430
g C m™ yr'. Therefore, the best estimation of
the NPP in this study focused on the dry- and
wet-season images because of the smallest
bias. However, if the shadow process was
considered, then the annual NPP with shadow
correction was better than that with shadow
retention because there was only 2 2.43 g C m”
yr' difference with the field-measured carbon
amount. Figure 5 shows distribution maps of

annual NPP in the dry- and wet-season im-
ages with shadow retention and shadow cor-
rection.

Analysis of NPP variations from differ-
ent seasons and forest types

From the above results, the monthly
and annual NPP values estimated from the
dry- and wet-season images and 2 shadow
processes (i.e., shadow retention and shadow
correction) were then applied to analyze NPP
variations from different seasons and forest

types.

NPP variations from different seasons

Since this study focused on NPP es-
timations in 2003, the following seasonal
analysis of NPP variations was based on 4
seasons (spring, summer, autumn, and win-
ter) in 2003. Table 7 shows NPP estimations
from the accumulation period and 4 different
seasons. Results indicate that most NPP ac-
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Fig. 5. Distribution maps of annual net primary productivity (NPP) in the dry and wet
seasons with (a) shadow retention and (b) shadow correction.

Table 7. Net primary productivity (NPP) variations (g C m™) from different seasons in 2003

Shadow NPP NPP Spring
(Mar.~May)

process  (Jan.~Dec.) (Apr.~Oct.)

Winter
(Dec.~Feb.)

Autumn
(Sep.~Nov.)

Summer
(June~Aug.)

Shadow
retention
Shadow
correction

452,50 389.28 (86%) 109.78 (24.3%) 191.41 (42.3%) 120.33 (26.6%) 30.99 (6.8%)

43243 372.01 (86%) 104.91 (24.3%) 182.92 (42.3%) 114.99 (26.6%) 29.61 (6.8%)

cumulation was distributed between April and
October, and it was about 86% of the annual
NPP. NPP values in spring, summer, autumn
and winter were about 24.3, 42.3, 26.6, and
6.8%, respectively. Obviously, seasonal
NPP variations were significant in the study
area. The sequence of NPP variation from
maximum to minimum was summer, autumn,
spring, and winter.

NPP variations from different forest types
Table 8 shows NPP variations from
different forest types, and Fig. 5 shows the
distribution of NPP spatial variations with
shadow retention and shadow correction.
Results in Table 8 are reasonable because the
NPP with shadow retention was larger than
that with shadow correction. Compared to the
field-measured carbon amount (430 g C m”
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Table 8. Net primary productivity (NPP) variations from different forest types in 2003

Annual NPP Total NPP
Forest type Area (gCm”yr" (10°g C yr'") F ield-measuzed cart??n
(ha) Shadow  Shadow Shadow  Shadow amount (10° g Cyr")
retention correction  retention correction
NHMT 5008.13 429.71 410.66 21520.44 20566.39 20433.17
CT 1663.67 411.32 393.08 6843.01 6539.55 6504.95
CMT 927.13 587.72 561.65 544893  5207.23 5173.39
CHMT 677.29 497.83 475.75 3371.75 322221 3203.58
HMT 853.14 483.70 462.24 4126.64  3943.55 391591
Study area  9129.36 452.50 432.43 41310.35 39478.09 39231.00

NHMT, natural hardwood mixed type; CT, conifer type; CMT, conifer mixed type; CHMT, conifer-

hardwood mixed type; HMT, hardwood mixed type.

yr'), the NPP with shadow correction (432.43
g C m” yr'") was reasonable and acceptable
because of the smallest bias. Therefore, the
following variation analysis was based on the
annual NPP with shadow correction. Clearly,
conifer mixed forest had the largest NPP at
561.65 ¢ C m” yr' among the 5 forest types.
The sequence from maximum to minimum
was conifer-hardwood mixed forest, hard-
wood mixed forest, natural hardwood mixed
forest, and conifer forest. However, natural
hardwood mixed forest had the largest total
NPP at 2.056639 x 10"°g C yr" because of the
largest area. Then the sequence was conifer
forest, conifer mixed forest, hardwood mixed
forest, and conifer-hardwood mixed forest.
This study applied SPOT images and the
model of light use efficiency to estimate the
NPP of the study area. During the research
process, 3 topics of the shadow effect, ¢,,, for
forest types, and image acquisition were also
investigated. Some discussion related to this
study is presented here. First, from results of
the generated shadow map and shadow ef-
fect on the NDVI and SR, the shadow effect
and its process should obviously be consid-
ered when using SPOT vegetation indices
to estimate the NPP. However, results of the
FPAR estimation indicated that the process of

shadow removal cannot be applied because
it generated a lower FPAR due to the linear
transformation from the NDVI to FPAR ;-
This finding is seldom seen in NPP stud-
ies because most studies use remote sensing
images with low spatial resolution such as
AVHRR, MODIS images, and their shadow
effects are greatly reduced by the low-resolu-
tion data (Burgess et al. 1995). Second, as for

the parameter of ¢,,,, which is important for

NPP estimations, this study simulated the ¢,
for each forest type of the study area accord-
ing to the calculated T,, T,, and W param-
eters from meteorological data, the estimated
APAR parameter from the seasonal image,
and the field-measured carbon amount from
the forest inventory data. The simulated ¢,,,,
for forest types was between the value used
in the CASA model (0.389 ¢ C MJ ™) and the
simulated value by Zhu et al. (2006), and is
also consistent with a study by Peng et al.
(2000). Meanwhile, the value of NPP estima-

tion using the simulated ¢,,,, was close to that

of the field-measured carbon amount. There-
fore, the simulated result in this study was
reasonable and feasible. Third, to estimate the
annual NPP, monthly SPOT images are need-
ed. However, this is difficult in Taiwan due to

environmental characteristics. In this study, 2
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seasonal SPOT images were selected to inves-
tigate the effect of image acquisition on NPP
estimations. From the comparison between
the estimated annual NPP and field-measured
carbon amount, results from the dry- and wet-
season images were obviously better than that
from a 1-season image. In addition, the analy-
sis of NPP variations using dry-wet season
images indicated that the majority of NPP ac-
cumulation was about 86% of the annual NPP
and was mainly distributed between April
and October. This result is similar to that of
a study by Zhu (2005). From this result, it is
feasible to use seasonal images for estimating
the NPP in Taiwan.

CONCLUSIONS

This study focused on applying SPOT
vegetation indices to estimate the net primary
productivity (NPP) of the Nanzhuang Na-
tional Forest in Taiwan. Due to the problems
of the shadow effect, maximum light use ef-
ficiency for forest types, and image acquisi-
tion in Taiwan, their effects on the estimation
of NPP were also investigated in this study.
The following conclusions were drawn. First,
remote sensing is a timely, feasible, effec-
tive, economic, and large-scale approach to
estimate forest NPP. Although a slight differ-
ence existed between the estimated NPP from
SPOT vegetation indices and the field-mea-
sured carbon amount from traditional forest
inventory data, this technique has advantages
in analyzing spatiotemporal variations in
NPP. For example, seasonal variations in the
NPP were significant at the Nanzhuang Na-
tional Forest in Taiwan. The majority of NPP
accumulation was distributed between April
and October, and it was about 86% of the to-
tal NPP in a year. Second, the shadow effect
and its process should be considered when
using SPOT vegetation indices to estimate

265

the FPAR. We propose that the process of
shadow removal cannot be applied when esti-
mating the FPAR because it generates a lower
FPAR due to the linear transformation from
the NDVI to FPARypy; or the SR to FPAR;.
Therefore, it is not suitable for estimating
values of the FPAR, APAR, and NPP. Third,
maximum light use efficiency is an important
parameter for NPP estimation when using
remote sensing techniques. However, many
divergences still exist as to values of different
forest types. This study simulated the maxi-
mum light use efficiency for each forest type
according to the calculated temperate scalars
and water scalar, the estimated APAR from
remote sensing data, and the field-measured
carbon amount from forest inventory data.
The simulated result was feasible when
comparing the estimated NPP with the field-
measured carbon amount. Fourth, monthly
images are important for accurately estimat-
ing the annual NPP, in addition to the shadow
effect and maximum light use efficiency of
forest types. Because it is difficult to acquire
monthly images in Taiwan, an alternative ap-
proach using the dry-wet season images was
adopted. From the analysis of NPP variations
and a comparison between the estimated NPP
and field-measured carbon amount, the pro-
posed approach is feasible for estimating NPP
of forests in Taiwan.
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