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Research paper

Estimating Forest Net Primary Productivity Using  
Two Seasonal SPOT Images

Chi-Chuan Cheng1,2)

【Summary】

This study aimed to apply remote sensing to estimate the forest net primary productivity (NPP) 
of Nanzhuang National Forest in Taiwan. The research processes included calculating vegetation 
indices from SPOT images of 2 seasons in 2003, estimating the fraction of photosynthetically 
active radiation (FPAR) and photosynthetically active radiation absorbed by the different forest 
types (APAR), estimating the NPP, and finally analyzing NPP variations from different seasons 
and forest types. Furthermore, the shadow effect, simulation of the maximum light use efficiency 
for different forest types, and the problem of image acquisition for NPP estimation in Taiwan were 
also investigated. The results are as follows. Under the consideration of the shadow effect and 
simulation of the maximum light use efficiency for different forest types, the NPP estimation on 
the dry season image was 361.22 g C m-2 yr-1 with shadow retention and 293.19 g C m-2 yr-1 with 
shadow correction, while the wet season image was 545.07 g C m-2 yr-1 with shadow retention and 
572.45 g C m-2 yr-1 with shadow correction. As for using dry- and wet-season images, NPP values 
were 452.5 and 432.43 g C m-2 yr-1 with shadow retention and shadow correction, respectively. A 
comparison between the estimated NPP and the field-measured carbon amount derived from forest 
inventory data (i.e., 430 g C m-2 yr-1) indicated that the NPP estimated from 2 seasonal images had 
the best result because of the smallest bias. Meanwhile, the seasonal analysis of NPP variations 
was significant in the study area. The majority of NPP accumulation was about 86% of the annual 
NPP and was mainly distributed between April and October. In addition, we propose that among 
the 3 shadow processes, shadow removal cannot be applied to estimate the NPP because a lower 
FPAR was generated when estimating the FPAR due to the linear transformation of vegetation in-
dices. We concluded that remote sensing is a timely, effective, feasible, and large-scale approach 
for estimating the forest NPP and provides the NPP for a spatiotemporal variation analysis. Mean-
while, the shadow effect and simulation of the maximum light use efficiency for forest types affect 
the estimation of forest NPP. Therefore, their effects should be considered when applying SPOT 
vegetation indices to estimate forest NPP. In addition, an alternative approach using seasonal im-
ages is also feasible to eliminate the problem with image acquisition in Taiwan.
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研究報告

森林淨初級生產力之遙測估算

鄭祈全1,2)

摘 要

本研究目的主要在藉由遙測技術，估算南庄事業區之森林淨初級生產力(NPP)。研究過程包括
2003年SPOT衛星影像之植生指數計算、光合作用有效輻射分量 (FPAR)和光合作用有效吸收輻射
(APAR)之估算、森林淨初級生產力之估算、以及不同季節和不同林型之淨初級生產力的變化分析，進
而探討影像陰影、林型最大光能利用率模擬、及影像獲取等問題對森林NPP估算之影響。研究結果指
出，在考量影像陰影和林型最大光能利用率模擬的情況之下，SPOT乾季影像在陰影保留和陰影校正
處理後所估算的NPP分別為361.22和293.19 g C m-2 yr-1；溼季影像為545.07和572.45 g C m-2 yr-1；而使

用乾、溼二季影像所估算的NPP則為452.5和432.43 g C m-2 yr-1。上述應用遙測方法估算的NPP，經與
地面樣區調查方法所得的結果(430 g C m-2 yr-1)比較後顯示，使用乾、溼二季影像因差值最小，估算結
果較佳，其中又以經陰影校正處理的結果最佳。同時，從NPP季節變化的分析結果得知，NPP的積累
期主要發生在4~10月份，約占了年淨初級生產力總量的86%。其次，本研究在執行陰影處理過程中亦

發現，使用陰影移除的作法並不適合於NPP之遙測估算，其原因主要是植生指數會因線性轉換而造成
FPAR估算值變小，並導致NPP估算值偏低的現象。

由上述研究結果可得結論如下：應用遙測技術估算森林NPP，除了具有即時、有效、經濟、可行
和大尺度的特性之外，並可提供森林NPP時空動態變化分析之用。但因影像陰影和林型最大光能利用
率問題會影響森林NPP之估算，因此在應用SPOT植生指數估算NPP時，必須考量其影響效應。此外，
台灣因環境關係，較難獲取逐月的SPOT衛星影像，供森林NPP估算之用。針對此問題，本研究使用
SPOT季節性影像進行NPP估算的作法，可提供影像獲取不易但乾、溼季分明的地區做為參考。
關鍵詞：淨初級生產力、遙測、植生指數。

鄭祈全。2014。森林淨初級生產力之遙測估算。台灣林業科學29(4):251-66。

INTRODUCTION
Global climate change has been an issue 

of growing concern since the end of the 20th 
century. The increasing amount of carbon 
dioxide is regarded as one of the important 
factors accelerating global warming and 
leading to global climate change. Therefore, 
many countries signed the Kyoto Protocol 
(KP) in 1997. The KP agreed that carbon se-
questration can reduce climate change, and 
participating nations are required to estimate 
their greenhouse gases and provide a national 
greenhouse gas inventory report. Since then, 

carbon sequestration has become an important 
issue in terms of absorbing and storing carbon 
dioxide. Meanwhile, forests play important 
roles because they yield the greatest poten-
tial for reducing greenhouse gas emissions. 
Several studies indicated that the combina-
tion of forest inventories and remote sensing 
has become the main method for assessing 
carbon amounts. Particularly, according to the 
International Panel on Climate Change (IPCC) 
Good Practice Guidance, remote sensing 
is a useful technique for estimating carbon 
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amounts on a large scale to verify national 
land uses, land-use changes, and forestry 
(LULUCF).

As for estimating carbon amounts, several 
methods have been proposed, including sam-
pling of ground biomass, flux towers, model 
estimation, and remote sensing techniques. 
Among these methods, remote sensing is an 
effective and large-scale method for estimat-
ing net primary productivity (NPP) (Zhu 
2005). Common approaches used in remote 
sensing are regression models of forest stocks 
and vegetation indices to estimate carbon 
amounts (Monteith 1972, Wang 2010). Sev-
eral studies applied different scales of remote 
sensing images to estimate the NPP and 
analyze changes in NPP (Law and Waring 
1994, Raymond and Hunt 1994, Goetz and 
Prince 1996, Gower et al. 1999, Zhu 2005). 
However, the shadow effect and simulation 
of the maximum light use efficiency (εmax) for 
vegetation types must be considered when 
estimating the NPP (Burgess et al. 1995, Zhu 
et al. 2006). For example, the shadow effect 
in high-relief areas affects the amounts of red 
and infrared radiation reflected by the land 
surface. Burgess et al. (1995) investigated 
the shadow effect on AVHRR NDVI data 
with a digital elevation model to simulate the 
shadow effect. They found shadow errors of 
as large as 13.5% at a 50-m resolution which 
became smaller with an increasing pixel size; 
for pixels of 1.1-km resolution, the error was 
< 3%. Therefore, Burgess et al. (1995) con-
cluded that the fairly strong shadow effect 
in high-resolution data is greatly reduced in 
low-resolution data. In addition to the shadow 
effect, the εmax is also a key parameter for es-
timating NPP when applying remote sensing 
data. However, many divergences still exist 
as to its value with different vegetation types 
(Potter et al. 1993, Field et al. 1995, Peng et 
al. 2000, Zhu et al. 2006). Potter et al. (1993) 

and Field et al. (1995) took the global εmax to 
be 0.389 g C MJ-1. Peng et al. (2000) adopted 
1.25 g C MJ-1 to estimate the spatial distribu-
tion of the εmax in Guangdong Province, China 
and indicated the εmax used in the CASA 
model (0.389 g C MJ-1) was lower compared 
to that of Guangdong vegetation. For this rea-
son, Zhu et al. (2006) simulated the εmax for 
some typical vegetation types in China based 
on NOAA/AVHRR remote sensing data and 
field-observed NPP data. From previous re-
search, values of the εmax for different vegeta-
tion types were obviously inconsistent.

Due to the importance of forest NPP and 
the potential use of remote sensing, this study 
applied SPOT images to estimate the NPP of 
Nanzhuang National Forest in Taiwan and 
also examined the shadow effect and εmax for 
estimating NPP. However, another problem 
also exists in Taiwan, that is, monthly images 
are needed to estimate the annual NPP when 
using remote sensing. In fact, it is difficult to 
acquire monthly SPOT images in Taiwan due 
to the environmental characteristics. There-
fore, seasonal SPOT images were applied in 
this study to investigate their feasibility for 
NPP estimation.

MATERIALS AND METHODS

Study area
Nanzhuang National Forest, which be-

longs to the Taiwan Forest Bureau, is located 
in northern Taiwan (Fig. 1). The area covers 
about 9129.36 ha, and the elevation ranges 
145~2610 m. The mean temperature ranges 
15.1~28.8℃. The mean annual rainfall is 
about 1782.7 mm yr-1.

Materials
Remote sensing data

As mentioned previously, it is difficult 
to acquire monthly SPOT images for NPP 



254 Cheng─Estimating forest net primary productivity

estimation in Taiwan. However, there are dis-
tinct dry and wet seasons. Therefore, accord-
ing to the meteorological data including total 
monthly precipitation, mean monthly tem-
perature, and total monthly solar radiation, 2 
clear SPOT-4 images acquired on 2003 Janu-
ary 17 and 2003 June 28 were selected from 
the Center for Space and Remote Sensing 
Research (CSRSR), National Central Univer-
sity, Jhongli City, Taiwan. The SPOT images 
included green (0.5~0.59 μm), red (0.61~0.68 
μm), infrared bands (0.79~0.89 μm), and 
short-wave infrared (SWIR, 1.58~1.75 μm) 
with a 20×20-m spatial resolution, and have 
precision correction with ground control 
points and digital terrain model (DTM). To 
examine the feasibility of seasonal images for 
NPP estimation in this study, the 2 available 
SPOT images were assumed to be represen-
tative of the dry (2003 January 17) and wet 
seasons (2003 June 28) according to the me-
teorological data.

Meteorological data
To acquire meteorological data of the 

study area in 2003, total monthly precipita-
tion, mean monthly temperature, and total 
monthly solar radiation in Taiwan were 
provided by the Taiwan Typhoon and Flood 
Research Institute and derived from 392, 122, 
and 22 meteorological stations, respectively. 
All data were compiled with missing and sus-
picious data, and then interpolated at the same 
scale with the SPOT images using the geo-
statistical analysis of ArcGIS 10.2 software 
(Environmental System Research Institute, 
Inc.). After that, 3 kinds of monthly meteoro-
logical data of the Nanzhuang National Forest 
were further extracted from Taiwan’s monthly 
meteorological data.

Forest type map, field inventory data of plots, 
and field-measured carbon amounts

The forest type map (Fig. 1) and field 
inventory data of Nanzhuang National Forest 

Fig. 1. Study area and forest type map including natural hardwood mixed type (NHMT), 
conifer type (CT), conifer mixed type (CMT), conifer-hardwood mixed type (CHMT), 
hardwood mixed type (HMT). Black points denote the 55 field plots.
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were collected from the Taiwan Forest Bu-
reau. The forest type map is classified into 5 
types: natural hardwood mixed type (NHMT), 
conifer type (CT), conifer mixed type (CMT), 
conifer-hardwood mixed type (CHMT), and 
hardwood mixed type (HMT). The field in-
ventory data included 55 plots. The relation-
ship between the forest type and number of 
plots was as follows: NHMT=18, CT=10, 
CMT=15, CHMT=8, and HMT=4. As for the 
plot size, there were 3 kinds of rectangular 
plot sizes: 40×25 m (0.1 ha), 28.4×17.6 m 
(0.05 ha), and 17.9×11.2 m (0.02 ha). Each 
plot had been inventoried in 1998 and 2003. 
The inventory data included tree species, di-
ameter at breast (DBH), and tree height (H). 
As for the field-measured carbon amount 
based on forest inventory data, the Timber 
Resources Inventory Projection System 
(TRIPS) established by the Taiwan Forest Bu-
reau was used. There are 3 steps as follows. (1) 
Calculation of forest stocks was based on for-
est inventory data in 1998 and 2003. Only 52 
field plots were used to calculate forest stock 
due to 3 missing plots in 1998. The forest 
stock of each plot was first calculated using 
the TRIPS and a stock equation of the Taiwan 
Forest Bureau. Then this was converted from 

plot size into per hectare, and the forest stock 
was further estimated for each forest type. (2)
The forest carbon stock for each forest type 
was then estimated using the calculated forest 
stock by the following equation (1): 
C = V stem/ha×EF×D×CF;	 (1)
where C is the carbon stock per hectare, 
V stem/ha is the forest stock per hectare, EF is 
the expansion factor from stem stock to tree 
stock, D is the density from forest stock to 
biomass, and CF is the carbon fraction.

In equation (1), a couple of parameters 
refer to the IPCC (Wang 2007). For example, 
the expansion factor (EF) was assumed to be 
1.65 while the carbon fraction (CF) was 0.5. 
As for the parameter of density (D), 5 forest 
types (i.e., NHMT, CT, CMT, CHMT, and 
HMT) were assumed to be 0.49, 0.44, 0.44, 
0.46, and 0.49, respectively (Wang 2010). (3) 
The field carbon amount of 2003 was finally 
measured according to the estimated for-
est carbon stocks in 1998 and 2003. Table 1 
shows the results of field-measured carbon 
amounts for 2003.

Methodology
Figure 2 is a flow chart for NPP estima-

tion based on SPOT vegetation indices. The 

Table 1. Field-measured carbon amount of the Nanzhuang National Forest in 2003 
according to the inventory data of field plots
	 Forest type	 NHMT	 CT	 CMT	 CHMT	 HMT	 Study area
Area (ha)	 5008.13	 1663.67	 927.13	 677.29	 853.14	 9129.36
No. of plots	 18	 9	 14	 8	 3	 52
Forest stock in 1998 (m3 ha-1)	 236.83	 670.09	 193.55	 238.41	 205.01	 308.78
Forest stock in 2003 (m3 ha-1)	 282.24	 734.83	 294.37	 283.66	 256.86	 390.98
Carbon stock in 1998 (g C m-2)	 9991	 20523	 5426	 8636	 10546	 11024
Carbon stock in 2003 (g C m-2)	 12030	 22478	 8218	 11002	 12841	 13314
Carbon stock in 5 yrs (g C m-2)	 2039	 1955	 2792	 2366	 2295	 2290
Carbon amount (g C m-2 yr-1)	 408	 391	 558	 473	 459	 430
Total carbon (106 g C yr-1)	 20433.17	 6504.95	 5173.39	 3203.58	 3915.91	 39231.00
NHMT, natural hardwood mixed type; CT, conifer type; CMT, conifer mixed type; CHMT, conifer-
hardwood mixed type; HMT, hardwood mixed type.
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research process included calculating vegeta-
tion indices from the SPOT image, estimat-
ing the fraction of photosynthetically active 
radiation (FPAR) and photosynthetically 
active radiation absorbed (APAR) by forest 
types, estimating NPP, and finally analyzing 
NPP variations in different seasons and forest 
types. In addition, common problems occur-
ring in Taiwan were also investigated. For ex-

ample, the shadow effect, εmax for forest types, 
and image acquisition on the estimation of 
forest NPP were examined.

Calculation of the vegetation index from 
SPOT images with shadow processes

The Normalized Difference Vegetation 
Index (NDVI) and Simple Ratio Vegetation 
Index (SR) were used in this study, because 

Fig. 2. Flow chart for estimating forest net primary productivity (NPP).
(NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio Vegetation Index; FPAR, 
Fraction of Photosynthetically Active Radiation; APAR, Absorbed Photosynthetically Active 
Radiation; SOL, Solar Radiation)
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both indices are primary parameters for es-
timating the FPAR (Los et al. 1994). The 
NDVI is commonly applied to vegetation 
indices. This was calculated with the near-
infrared (NIR) and red (RED) bands as shown 
in equation (2). The NDVI range is between 
-1 and 1, meaning there is high-density vege-
tation when it is close to 1. On the other hand, 
the land-use type is non-vegetation when the 
NDVI is < 0.

NDVI (x, t) = ;	 (2)

where x is a pixel in the SPOT image, and t is 
the period of the image.

The SR was calculated by the NDVI as 
in equation (3). The index represents the rich-
ness of vegetation, but is affected by region 
and seasonality.

SR (x, t) = [ ] .	 (3)

According to a previous report (Zhou et 
al. 2009), vegetation indices are affected by 
image shadows. To deal with this problem in 
this study, a shadow map was first generated 
by unsupervised classification under the ISO-
DATA (Iterative Self-Organizing Data Analy-
sis Technique) clustering method of ERDAS 
IMAGINE software (Intergraph Corporation). 
Then the shadow map with 55 field plots was 
overlaid, and shadow processes were carried 
out, such as shadow retention, shadow remov-
al, and shadow linear-correlation correction. 
Equation (4) is the shadow linear-correlation 
correction for adjusting the NDVI:

DNstretch = ×(DNshadow – 

ShadowM) + NonShadowSD;	 (4)
where DNstretch and DNshadow represent the 
NDVI value with and without shadow cor-
rection, ShadowSD and NonShadowSD are the 
standard deviations of NDVI in shadow and 
non-shadow forestland, and ShadowM and 

NonShadowM refer to the NDVI in shadow 
and non-shadow forestland, respectively.

Estimations of FPAR and APAR with sea-
sonal images

According to previous research (Hatfield 
et al. 1984, Sellers 1985), the relation be-
tween FPAR and NDVI is near-linear. There-
fore, the relation of FPAR and NDVI can be 
used to estimate the FPAR of NDVI (i.e., 
FPARNDVI) if linearity is assumed. The equa-
tion between FPAR and NDVI is given by
FPARNDVI (x, t) = 

 
+ FPARmin;	 (5)
where FPARmax = 0.950 and FPARmin = 0.001 
are based on research by Hatfield et al. (1984) 
and Sellers (1985). Both are independent of 
vegetation types.

In addition to the above FPARNDVI, Los 
et al. (1994) and Field et al. (1995) also indi-
cated that the FPAR has a linear relationship 
with the SR. The relation between the FPAR 
and SR (i.e., FPARSR) is as in equation (6):
FPARSR (x, t) = 

+ FPARmin;	 (6)
where SRi,max and SRi,min respectively corre-
spond to the NDVIi,max and NDVIi,min.

To understand which model is suitable 
for estimating the FPAR, a comparison was 
made between the FPARNDVI and FPARSR (Los 
et al. 1994). Results indicated that a large bias 
existed in the FPARNDVI, while a smaller bias 
occurred in the FPARSR. To resolve this prob-
lem, Los et al. (1994) took the model as in 
equation (7), and found that the mean FPAR 
estimated by the FPARNDVI (equation 5) and 
FPARSR (equation 6) had the smallest bias. 
Therefore, according to the research results of 
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Los (1998), this study adopted equation (7) to 
estimate the FPAR with α arbitrarily set to 0.5:
FPAR (x, t) = αFPARNDVI (x, t) + (1 – α) 
FPARSR (x, t) .	 (7)

After the FPAR estimation, the APAR 
(MJ m-2 mo-1) was further estimated. It is the 
product of PAR and FPAR at each monthly 
time step. Based on the research of Zhu 
(2005), the PAR equals half of the total solar 
radiation (SOL) (MJ m-2) in this study. The 
APAR is then given by
APAR (x, t) = SOL (x, t)×FPAR (x, t)×0.5.		
	 (8)

As mentioned previously, the effect of 
image acquisition on NPP estimations was 
also investigated in this study. Therefore, 
in addition to the FPAR of the dry and wet 
seasons, this study also used the average of 
the mean FPAR of the dry and wet seasons 
as the FPARAVERAGE for estimating the APAR 
and NPP. The objective was to investigate the 
feasibility of using seasonal images for NPP 
estimations.

Estimation of NPP
NPP (g C m-2 mo-1) is the product of 

APAR and the actual light use efficiency (ε) (g 
C MJ-1) at each monthly time step: 
NPP (x, t) = APAR (x, t)×ε (x, t).	 (9)

As for the ε in equation (9), Potter et al. 
(1993) and Field et al. (1995) indicated the ε 
is affected by temperature and water. It is the 
product of the εmax (g C MJ-1) and the scales 
representing the availability of water (W) 
and the suitability of temperature (T1, T2), as 
shown in equation (10): 
ε (x, t) = W (x, t)×T1 (x, t)×T2 (x, t)×εmax. 		
	 (10)

Here, εmax means each forest type has a 
maximum light use efficiency in an ideal con-
dition. The water scalar is a function of the 
ratio of the estimated evapotranspiration (E) 
to potential evapotranspiration (Ep) at each 

monthly time step as shown in equation (11). 
As for the calculation of W, this study re-
ferred to Zhu (2005) and adopted the concept 
of regional estimated evapotranspiration and 
regional potential evapotranspiration to calcu-
late the W:
W (x, t) = 0.5 + 0.5×E (x, t) / Ep (x, t) .	 (11) 

The 2 temperature scalars represent the 
regulation of plant growth by temperature. 
The values of T1 and T2 were calculated by 
equations (12) and (13):
T1 (x, t) = 0.8 + 0.02×Topt (x) – 0.0005×

[Topt (x)]2 and	 (12)

T2 (x, t) = 

× ;	 (13)

where Topt (x) is the mean monthly tempera-
ture with the maximum NDVI in a year. 

Finally, equations (9) and (10) were 
combined into the model as equation (14):
NPP (x, t) = APAR (x, t)×W (x, t)×T1 (x, t)×

T2 (x, t)×εmax.	 (14)
The εmax in equation (14) is a key param-

eter for estimating NPP in remote sensing ap-
plications. Related research about simulating 
εmax for forest types is rare in Taiwan. There-
fore, this study proposed simulating the εmax 
according to the known parameters of APAR, 
T1, T2, W, and field-measured carbon amount 
(Table 1) in 2003. After the simulated εmax 
was generated, equation (14) was applied to 
estimate the monthly NPP of each forest type. 
Finally, the monthly NPP was accumulated 
into the annual NPP (g C m-2 yr-1) of the study 
area in 2003.

Analysis of NPP variations from different 
seasons and forest types

After estimating NPP, NPP variations 
were further analyzed from different seasons 
and forest types. The analysis from different 



259Taiwan J For Sci 29(4): 251-66, 2014

seasons focused on the accumulation period 
of NPP and variations among the 4 seasons 
(i.e., spring, summer, autumn, and winter). As 
for NPP variations in different forest types, 
the analysis focused on spatial variations of 5 
forest types (i.e., NHMT, CT, CMT, CHMT, 
and HMT) under the processes of shadow re-
tention and shadow correction.

RESULTS AND DISCUSSION

Calculation of NDVI and SR with shad-
ow processes

Unsupervised classification using the 
ISODATA clustering method of ERDAS 
IMAGINE software was first applied to gen-
erate shadow maps for the dry (2003 January 
17) and wet seasons (2003 June 28) as shown 
in Fig. 3. The generated shadow map was 
then overlaid onto the original SPOT image 
for further interpretation of the shadow area. 
The results indicated that the dry- and wet-
season images were covered by about 21.9 
and 15.8% shadow areas, respectively.

The effects of shadow processes (i.e., 
shadow retention, shadow removal, and 
shadow linear-correlation correction) on the 
NDVI and SR values were further investigat-
ed. Results are shown in Table 2. Clearly, the 
mean NDVI or SR in the dry-season image 
was smaller than that of the wet-season im-
age. However, from the shadow effect on the 
NDVI or SR, shadow removal was larger than 
shadow retention and very close to the shadow 
correction for the dry- or wet-season image.

Estimation of the FPAR and APAR with 
shadow processes and seasonal images

Similar to the process of NDVI and SR 
calculation, dry- and wet-season images were 
applied to estimate the mean FPAR with 
shadow processes. The results are shown in 
Table 3 and summarized as follows. (i) The 
mean of FPARNDVI was larger than that of 
FPARSR regardless of the shadow process 
or seasonal image. This differed from the 
NDVI and SR (Table 2). (ii) The means of 
FPARNDVI, FPARSR, FPAR derived from the 

Fig. 3. SPOT images on 2003 January 17 (left) and 2003 June 28 (right). The green color 
denotes shadow areas.
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dry-season image were smaller than those 
derived from the wet-season image, except 
for the process of shadow removal. (iii) The 
means of FPARNDVI, FPARSR, and FPAR with 
shadow removal were pretty small compared 
to shadow retention or shadow correction, 
particularly in the wet-season image. The 
reason was due to the linear transformation of 
the FPAR.

From the third point of the above sum-
mary, there is an important implication, i.e, 
the mean FPAR with shadow removal has to 
be ignored, because the lower value of the 
FPAR can affect estimations of the APAR 
and NPP. Therefore, only 2 shadow processes 
(i.e., shadow retention and shadow correc-
tion) were used to estimate the APAR. Table 4 

shows results of the mean FPAR with 2 shad-
ow processes and seasonal images, including 
the FPAR in the dry and wet seasons, and the 
FPARAVERAGE in the dry and wet seasons. Fig-
ure 4 shows the means of the monthly APAR 
in dry- and wet-season images with shadow 
retention and shadow correction.

Estimation of the NPP with shadow pro-
cesses and seasonal images
Simulation of the εmax for forest types

The εmax is a key parameter for estimat-
ing NPP derived from remote sensing data. 
Therefore, before estimating the NPP, this 
study applied equation (14) to simulate the 
εmax for each forest type of the study area ac-
cording to the following known parameters: 

Table 2. Means of Normalized Difference Vegetation Index (NDVI) and Simple Ratio 
Vegetation Index (SR) with shadow processes and seasonal images
	 2003 January 17 (dry season)	 2003 June 28 (wet season)
	 Indices	 Shadow	 Shadow	 Shadow	 Shadow	 Shadow	 Shadow
	 retention	 removal	 correction	 retention	 removal	 correction
Mean of NDVI	 0.4207	 0.4717	 0.4727	 0.5223	 0.5466	 0.5475
Mean of SR	 2.6988	 2.9432	 2.9208	 3.2483	 3.4443	 3.4520

Table 3. Mean fraction of photosynthetically active radiation (FPAR) with shadow 
processes and seasonal images
	 2003 January 17 (dry season)	 2003 June 28 (wet season)
	 Types	 Shadow	 Shadow	 Shadow	 Shadow	 Shadow	 Shadow
	 retention	 removal	 correction	 retention	 removal	 correction
Mean of FPARNDVI 	 0.5160	 0.4120	 0.4122	 0.7023	 0.2917	 0.7262
Mean of FPARSR 	 0.2432	 0.2078	 0.2042	 0.4498	 0.2024	 0.4840
Mean of FPAR	 0.3796	 0.2088	 0.3081	 0.5762	 0.2470	 0.6051
NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio Vegetation Index.

Table 4. Mean fraction of photosynthetically active radiation (FPAR) with 2 shadow 
processes and seasonal images
	 Types	 Shadow retention	 Shadow correction
Mean of FPAR in the dry season	 0.3796	 0.3081
Mean of FPAR in the wet season	 0.5762	 0.6051
Mean of FPARAVERAGE in the dry and wet seasons	 0.4779	 0.4566
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(i) calculated T1, T2, and W parameters from 
meteorological data, (ii) the estimated APAR 
parameter from 2 seasonal images, and (iii) 
the field-measured carbon amount from the 
inventory data of field plots (Table 1). Table 
5 shows the value of εmax for each forest type 
with shadow retention and shadow correction. 
The results indicated the εmax with shadow 
correction was larger than that with shadow 
retention. Therefore, this study applied the 
εmax with shadow correction to estimate the 
NPP because shadow correction was 1 objec-
tive of this study, and it really improved the 
NDVI (Table 2).

NPP estimations with shadow processes and 
seasonal images

Based on the known parameters of 
APAR, T1, T2, and W and the simulated εmax 
for each forest type, equation (14) was then 
applied to estimate monthly and annual NPP 
values with shadow processes and seasonal 
images. Results are shown in Table 6 and 
summarized as follows. First, annual NPP 
values estimated from the dry-season image 
were 361.22 g C m-2 yr-1 with shadow reten-
tion and 293.19 g C m-2 yr-1 with shadow cor-
rection. As for the wet-season image, annual 
NPP values were 545.07 g C m-2 yr-1 with 

Fig. 4. Means of the monthly photosynthetically active radiation absorbed (APAR) by the 
different forest types in the dry- and wet-season images with 2 shadow processes.

Table 5. Simulation of the maximum light use efficiency (εmax) with shadow retention and 
shadow correction
Forest type	 εmax with shadow retention (unit: g C MJ-1)	 εmax with shadow correction (unit: g C MJ-1)
NHMT	 0.388	 0.406
CT	 0.386	 0.404
CMT	 0.555	 0.580
CHMT	 0.433	 0.453
HMT	 0.436	 0.456
NHMT, natural hardwood mixed type; CT, conifer type; CMT, conifer mixed type; CHMT, conifer-
hardwood mixed type; HMT, hardwood mixed type.
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shadow retention and 572.45 g C m-2 yr-1 with 
shadow correction. Second, annual NPP val-
ues estimated from the dry- and wet-season 
images were 452.5 g C m-2 yr-1 with shadow 
retention and 432.43 g C m-2 yr-1 with shadow 
correction.

To investigate if the 2 seasonal images 
were preferable over the 1 season image, a 
comparison was made between the annual 
NPP in Table 6 and the field-measured car-
bon amount (i.e., 430 g C m-2 yr-1) in Table 1. 
Results indicates that a large bias existed in 
the 1- season image when compared to 430 
g C m-2 yr-1. Therefore, the best estimation of 
the NPP in this study focused on the dry- and 
wet-season images because of the smallest 
bias. However, if the shadow process was 
considered, then the annual NPP with shadow 
correction was better than that with shadow 
retention because there was only a 2.43 g C m-2 
yr-1 difference with the field-measured carbon 
amount. Figure 5 shows distribution maps of 

annual NPP in the dry- and wet-season im-
ages with shadow retention and shadow cor-
rection.

Analysis of NPP variations from differ-
ent seasons and forest types

From the above results, the monthly 
and annual NPP values estimated from the 
dry- and wet-season images and 2 shadow 
processes (i.e., shadow retention and shadow 
correction) were then applied to analyze NPP 
variations from different seasons and forest 
types.

NPP variations from different seasons
Since this study focused on NPP es-

timations in 2003, the following seasonal 
analysis of NPP variations was based on 4 
seasons (spring, summer, autumn, and win-
ter) in 2003. Table 7 shows NPP estimations 
from the accumulation period and 4 different 
seasons. Results indicate that most NPP ac-

Table 6. Net primary productivity (NPP) in 2003 with shadow processes and seasonal 
images
	 Dry-season image	 Wet-season image	 Dry- and wet-
	 (g C m-2 yr-1)	 (g C m-2 yr-1)	 season images
	 Month			   (g C m-2 yr-1)
	 Shadow	 Shadow	 Shadow	 Shadow	 Shadow	 Shadow
	 retention	 correction	 retention	 correction	 retention	 correction
January	  7.91	  6.39	 11.84	 12.44	  9.84	  9.40
February	 10.09	  8.15	 15.14	 15.91	 12.58	 12.02
March	 15.90	 12.87	 23.89	 25.10	 19.84	 18.96
April	 37.78	 30.64	 56.93	 59.80	 47.26	 45.17
May	 34.05	 27.62	 51.40	 53.98	 42.68	 40.78
June 	 48.53	 39.42	 73.20	 76.86	 60.75	 58.06
July	 50.45	 40.93	 76.19	 80.02	 63.26	 60.45
August	 53.79	 43.68	 81.20	 85.27	 67.40	 64.41
September	 60.09	 48.96	 90.90	 95.41	 75.39	 72.05
October	 25.89	 20.97	 39.15	 41.14	 32.54	 31.09
November	  9.87	  8.00	 14.92	 15.68	 12.40	 11.85
December	  6.88	  5.55	 10.32	 10.84	  8.57	  8.19
Annual NPP  	 361.22	 293.19	 545.07	 572.45	 452.50	 432.43
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cumulation was distributed between April and 
October, and it was about 86% of the annual 
NPP. NPP values in spring, summer, autumn 
and winter were about 24.3, 42.3, 26.6, and 
6.8%, respectively. Obviously, seasonal 
NPP variations were significant in the study 
area. The sequence of NPP variation from 
maximum to minimum was summer, autumn, 
spring, and winter.

NPP variations from different forest types
Table 8 shows NPP variations from 

different forest types, and Fig. 5 shows the 
distribution of NPP spatial variations with 
shadow retention and shadow correction. 
Results in Table 8 are reasonable because the 
NPP with shadow retention was larger than 
that with shadow correction. Compared to the 
field-measured carbon amount (430 g C m-2 

Fig. 5. Distribution maps of annual net primary productivity (NPP) in the dry and wet 
seasons with (a) shadow retention and (b) shadow correction.

(a) Shadow retention (b) Shadow correction

Table 7. Net primary productivity (NPP) variations (g C m-2) from different seasons in 2003
Shadow	 NPP	 NPP	 Spring	 Summer	 Autumn	 Winter
process	 (Jan.~Dec.)	 (Apr.~Oct.)	 (Mar.~May)	 (June~Aug.)	 (Sep.~Nov.)	 (Dec.~Feb.)
Shadow	 452.50 	 389.28 (86%)	109.78 (24.3%)	 191.41 (42.3%)	 120.33 (26.6%)	 30.99 (6.8%)retention
Shadow	 432.43	 372.01 (86%)	104.91 (24.3%)	 182.92 (42.3%)	 114.99 (26.6%)	 29.61 (6.8%)correction
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Table 8. Net primary productivity (NPP) variations from different forest types in 2003
		  Annual NPP	 Total NPP 	

Forest type	 Area	 (g C m-2 yr-1)	 (106 g C yr-1)	 Field-measured carbon
	 (ha)	 Shadow	 Shadow	 Shadow	 Shadow	 amount (106 g C yr-1)
		  retention	 correction	 retention	 correction	
NHMT	 5008.13 	 429.71	 410.66	 21520.44	 20566.39	 20433.17
CT	 1663.67 	 411.32	 393.08	  6843.01	  6539.55	  6504.95
CMT	  927.13 	 587.72	 561.65	  5448.93	  5207.23	  5173.39
CHMT	  677.29 	 497.83	 475.75	  3371.75	  3222.21	  3203.58
HMT	  853.14 	 483.70	 462.24	  4126.64	  3943.55	  3915.91
Study area	 9129.36 	 452.50	 432.43	 41310.35	 39478.09	 39231.00
NHMT, natural hardwood mixed type; CT, conifer type; CMT, conifer mixed type; CHMT, conifer-
hardwood mixed type; HMT, hardwood mixed type.

yr-1), the NPP with shadow correction (432.43 
g C m-2 yr-1) was reasonable and acceptable 
because of the smallest bias. Therefore, the 
following variation analysis was based on the 
annual NPP with shadow correction. Clearly, 
conifer mixed forest had the largest NPP at 
561.65 g C m-2 yr-1 among the 5 forest types. 
The sequence from maximum to minimum 
was conifer-hardwood mixed forest, hard-
wood mixed forest, natural hardwood mixed 
forest, and conifer forest. However, natural 
hardwood mixed forest had the largest total 
NPP at 2.056639 x 1010 g C yr-1 because of the 
largest area. Then the sequence was conifer 
forest, conifer mixed forest, hardwood mixed 
forest, and conifer-hardwood mixed forest.

This study applied SPOT images and the 
model of light use efficiency to estimate the 
NPP of the study area. During the research 
process, 3 topics of the shadow effect, εmax for 
forest types, and image acquisition were also 
investigated. Some discussion related to this 
study is presented here. First, from results of 
the generated shadow map and shadow ef-
fect on the NDVI and SR, the shadow effect 
and its process should obviously be consid-
ered when using SPOT vegetation indices 
to estimate the NPP. However, results of the 
FPAR estimation indicated that the process of 

shadow removal cannot be applied because 
it generated a lower FPAR due to the linear 
transformation from the NDVI to FPARNDVI. 
This finding is seldom seen in NPP stud-
ies because most studies use remote sensing 
images with low spatial resolution such as 
AVHRR, MODIS images, and their shadow 
effects are greatly reduced by the low-resolu-
tion data (Burgess et al. 1995). Second, as for 
the parameter of εmax which is important for 
NPP estimations, this study simulated the εmax 
for each forest type of the study area accord-
ing to the calculated T1, T2, and W param-
eters from meteorological data, the estimated 
APAR parameter from the seasonal image, 
and the field-measured carbon amount from 
the forest inventory data. The simulated εmax 
for forest types was between the value used 
in the CASA model (0.389 g C MJ -1) and the 
simulated value by Zhu et al. (2006), and is 
also consistent with a study by Peng et al. 
(2000). Meanwhile, the value of NPP estima-
tion using the simulated εmax was close to that 
of the field-measured carbon amount. There-
fore, the simulated result in this study was 
reasonable and feasible. Third, to estimate the 
annual NPP, monthly SPOT images are need-
ed. However, this is difficult in Taiwan due to 
environmental characteristics. In this study, 2 
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seasonal SPOT images were selected to inves-
tigate the effect of image acquisition on NPP 
estimations. From the comparison between 
the estimated annual NPP and field-measured 
carbon amount, results from the dry- and wet-
season images were obviously better than that 
from a 1-season image. In addition, the analy-
sis of NPP variations using dry-wet season 
images indicated that the majority of NPP ac-
cumulation was about 86% of the annual NPP 
and was mainly distributed between April 
and October. This result is similar to that of 
a study by Zhu (2005). From this result, it is 
feasible to use seasonal images for estimating 
the NPP in Taiwan.

CONCLUSIONS

This study focused on applying SPOT 
vegetation indices to estimate the net primary 
productivity (NPP) of the Nanzhuang Na-
tional Forest in Taiwan. Due to the problems 
of the shadow effect, maximum light use ef-
ficiency for forest types, and image acquisi-
tion in Taiwan, their effects on the estimation 
of NPP were also investigated in this study. 
The following conclusions were drawn. First, 
remote sensing is a timely, feasible, effec-
tive, economic, and large-scale approach to 
estimate forest NPP. Although a slight differ-
ence existed between the estimated NPP from 
SPOT vegetation indices and the field-mea-
sured carbon amount from traditional forest 
inventory data, this technique has advantages 
in analyzing spatiotemporal variations in 
NPP. For example, seasonal variations in the 
NPP were significant at the Nanzhuang Na-
tional Forest in Taiwan. The majority of NPP 
accumulation was distributed between April 
and October, and it was about 86% of the to-
tal NPP in a year. Second, the shadow effect 
and its process should be considered when 
using SPOT vegetation indices to estimate 

the FPAR. We propose that the process of 
shadow removal cannot be applied when esti-
mating the FPAR because it generates a lower 
FPAR due to the linear transformation from 
the NDVI to FPARNDVI or the SR to FPARSR. 
Therefore, it is not suitable for estimating 
values of the FPAR, APAR, and NPP. Third, 
maximum light use efficiency is an important 
parameter for NPP estimation when using 
remote sensing techniques. However, many 
divergences still exist as to values of different 
forest types. This study simulated the maxi-
mum light use efficiency for each forest type 
according to the calculated temperate scalars 
and water scalar, the estimated APAR from 
remote sensing data, and the field-measured 
carbon amount from forest inventory data. 
The simulated result was feasible when 
comparing the estimated NPP with the field- 
measured carbon amount. Fourth, monthly 
images are important for accurately estimat-
ing the annual NPP, in addition to the shadow 
effect and maximum light use efficiency of 
forest types. Because it is difficult to acquire 
monthly images in Taiwan, an alternative ap-
proach using the dry-wet season images was 
adopted. From the analysis of NPP variations 
and a comparison between the estimated NPP 
and field-measured carbon amount, the pro-
posed approach is feasible for estimating NPP 
of forests in Taiwan.
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