蔬菜害蟲非農藥防治

方敏男 劉月珠 曾素英

台中區農業改良場

摘 要

將黃色粘板及水盤平放於豌豆田畦面0cm處,可以同時誘殺大量台灣花薊馬(F. intonsa)成蟲、若蟲及番茄斑潛蠅(L. bryoniae)成蟲,但距離該誘引物5m及10m處之植株害蟲密度,差異不顯著,每4m放置一個黃色水盤或一片黃色粘板,配合2.8%畢芬寧(Bifenthrin) E.C. 1,000倍使用,可以提高殺蟲劑防治效果,顯示單獨使用黃色水盤或粘板防治斑潛蠅及薊馬,難以達到防治目的,應用藥劑綜合防治則可減少豌豆被害損失。每3天巡視瓜園一次,當發現苦瓜瓜長4-6公分時,以外層為軟牛皮紙內層為黑色模造紙之雙層紙袋或雙層舊報紙套袋,可以防止瓜實蠅(D. cucurbitae)危害,增加產量及淨益分別為141及87%;當發現絲瓜瓜長5-7公分時,以白色耐濕紙袋或單層舊報紙套袋,亦可防止瓜實蠅危害,增加產量及淨收益分別為172及146%。以白蘭洗潔精200倍稀釋液於玻璃網室內防治甘藍偽菜蚜(L. erysimi),於處理後第6天仍有78.5%之防治效果。以蘇力菌(雙效)2,000倍於塑膠布簡易設施內防治芥藍菜斜紋夜蛾(S. liture),施藥後第6天之防治率為100%。

關鍵字:蔬菜害蟲、非農藥防治。

前 言

本省氣候高溫多濕,全年適合各類蔬菜栽培,同時亦適合各類害蟲生長繁殖,農民為了確保所種蔬菜之產量與品質,經常混合多種廣效性及長效性之農藥同時施用^(11,12,13),不但增加生產成本,造成環境污染、農藥殘留、產生抗藥性等問題⁽²⁴⁾,而且對於非目標之生物亦一併殺害,破壞生態自然平衡,促使害蟲猖獗發生⁽²⁷⁾。為了解決上述問題,同時將害蟲管理在經濟危害水平之下,化學藥劑以外之防治方法之開發,將是植物保護工作者的目標,但是由於蔬菜害蟲種類繁多,無法一一加以探討,本文僅就台灣花薊馬及番茄斑潛蠅在豌豆上,瓜實蠅在苦瓜及絲瓜上,偽菜蚜在甘藍上,斜紋夜蛾在芥藍菜上之非農藥防治試驗觀察結果,提出報告,以供蔬菜害蟲非農藥防治參考。

材料與方法

一、台灣花薊馬(Franklinilla intonsa Trybom)與番茄斑潛蠅(Liriomyza bryoniae (bach))之藥農藥

防治

1.水盤及粘板不同顏色、高度誘捕台灣花薊馬與番茄斑潛蠅效果觀察

1990年冬季至1991年春季於台中區農業改良場豌豆田,分別以黃、白、綠、紅、藍及黑色6種不同顏色之水盤(22cm×27cm×6cm),內裝水2公升加白蘭洗潔精4毫升及20cm×27cm上面塗有polyisobutene粘膠之粘板,每一種顏色水盤及粘板相距4m,分為距地面0、50、100及150cm4種不同高度,重複4次,每週定期調查誘捕蟲數並更換水盤溶液及粘板一次。

2.水盤、粘板誘捕薊馬、斑潛蠅蟲數與植株害蟲密度之關係觀察

1991年春季於台中區農業改良場播種台中11號豌豆,分為黃色、白色水盤,黃色、白色 粘板,並以綠色粘板為對照共5處理,每處理小區面積4m×15m=60m²,做三畦,每畦種一行, 採逢機完全區集設計,重複3次。當豌豆開花後於每小區中央一畦之中心點地面上各放置水盤 或粘板一個(片),每7天調查距離水盤或粘板5m及10m之豌豆植株薊馬(包括成蟲和若蟲)與斑 潛蠅(幼蟲)蟲數,水盤或粘板誘捕蟲數,並更換水盤溶液及粘板一次。

3.台灣花薊馬與番茄斑潛蠅綜合防治試驗

1991年冬季於台中區農業改良場豌豆田,進行台灣花薊馬與番茄斑潛蠅綜合防治試驗,處理區分為(1)75%賽滅淨W.P. 6,000倍,(2)2.8%畢芬寧E.C. 1,000倍,(3)黃色水盤1個加2.8%畢芬寧E.C. 1,000倍,(4)黃色粘板一片加2.8%畢芬寧E.C. 1,000倍,(5)畦面覆蓋黑色塑膠布加2.8%畢芬寧E.C. 1,000倍,(6)畦面覆蓋銀色塑膠布加2.8%畢芬寧E.D. 1,000倍等6種,另加對照不覆蓋、不放置水盤及粘板也不施藥區共7處理。小區面積4m×10m=40m²,做3畦,每畦種一行,以匍伏栽培方式,採逢機完全區集設計,重複4次,於豌豆播種後30天進行,水盤溶液或粘板每7天更新一次,藥劑處理區每7天施藥一次,連續3次,每次施藥前當天及第三次施藥後7天於每小區中央一行隨機取樣10株豌豆調查薊馬蟲數後,放入塑膠袋置於實驗室,每2天調查及記錄斑潛蠅蛹數一次,連續4次後計算防治率。

二、瓜實蠅(Dacus cucurbitae Coq.)之非農藥防治

1.不同套袋材質對苦瓜瓜果發育及瓜實蠅防治效果觀察

於埤頭鄉選擇0.1公頃之苦瓜園一處,按套袋材質分為(1)單層黑色紙袋(33cm×18cm),(2) 硬牛皮紙袋(38cm×15cm),(3)雙層紙袋(外層軟牛皮紙內層黑色模造紙(40cm×20cm)),(5)黑色 PE袋(40cm×25cm×0.06cm),(6)褐色PP袋(40cm×25cm×0.06cm),(7)綠色尼龍網袋(30cm×21cm)等處理,另加不套袋之對照區共8處理。試驗小區面積為4m×5m=20m²,重複4次,採逢機完全區集設計,為配合套袋及採收時期方便試驗進行,當瓜果發育達4-6公分時實施套袋,每處理每重複每次套袋10條正常瓜果,套袋前各瓜果分別編號並記錄長度,套袋10天後達採收期將各瓜果摘下,分別記錄正常瓜數,瓜實蠅危害瓜數及擦傷、蟲咬、萎縮等畸型瓜數,正常瓜果除秤重量外並按編號再量一次長度,以比較各套袋材質對苦瓜瓜果發育影響及對瓜實蠅防治效果,本試驗共重複調查5次。

2.不同套袋材質對絲瓜瓜果發育及瓜實蠅防治效果觀察

於南投市選擇0.1公頃之絲瓜園一處,按套袋材質分為(1)白色紙袋(33cm×18cm),(2)白色耐濕紙袋(37cm×22cm),(3)單層舊報紙袋(半張折成40cm×20cm),(4)白色尼龍網袋(37cm×21cm),(5)透明PP袋(40cm×20cm×0.06cm)等處理區,另加不套袋之對照共6處理。試驗小區面積為4m×10m=40m²,重複4次,採逢機完全區集設計,為配合套袋及採收時期方便試驗進行,當瓜果發育達5-7公分時實施套袋,每處理每重複每次套袋10條正常瓜果,套袋前各瓜果分別編號並記錄長度,套袋7天後達採收期將各瓜果摘下,分別記錄正常瓜數,瓜實蠅危害瓜數及裂開、擦傷、蟲咬、萎縮等畸型瓜數,正常瓜果並按編號再量一次長度,以比較各套袋材質對絲瓜瓜果發育影響及瓜實蠅防治效果,本項試驗共重複調查10次。

3.不同套袋材質對瓜實蠅防治效益之評估

1989年5月3日至31日於彰化縣埤頭鄉選擇苦瓜園一處,試驗處理區分為(1)單層黑色紙袋,(2)雙層紙袋,(3)雙層舊報紙袋,另加對照不套袋共4處理。1989年5月18日至6月16日於南投市選擇絲瓜園一處,試驗處理區分為(1)白色紙袋,(2)白色耐濕紙袋,(3)單層舊報紙袋,另加對照不套袋共4處理。兩種試驗之試驗小區面積均為4m×15m=60m²,重複4次,採逢機完全區集設計,試驗期間,苦瓜每2天採收一次共15次,絲瓜每天採收一次共30次,每次記錄各處理產量及批發價格,並換算成0.1公頃之產量及收益,以比軌其經濟效益。

三、偽菜蚜(Lipaphis erysimi (Kaltenbach))之非農藥防治

於玻璃網室內以20cm×17.5cm之栽盆種植甘藍(初秋),每一栽盆種一株。第一次試驗於每株甘藍自然發生蚜蟲平均達300隻以上時進行。第二次試驗於甘藍定植後發育達5-6葉時,每株接蚜蟲80隻,並於第二天再計算蚜蟲數一次後進行。試驗材料包括糖醋液、白蘭洗潔精、酒精、菸草、樟腦油、魚精、海草精等非農藥製劑,每一處理重複5次(5株)。第一次試驗於施藥後1、3、6及9天,第二次試驗於施藥後111、2、5及7天,調查每株甘藍存活蚜蟲數(成蟲及若蟲合併計算)。

四、斜紋夜蛾(Spodoptera litura Fabricins)之非農藥防治

於塑膠布簡易設施內種植芥藍菜,當斜紋夜蛾發生時即以蘇力菌、洗潔精、酒精、糖醋液、菸草及樟腦油等非農藥製劑進行防治試驗,小區面積1.4m×5m=7m²,採逢機完全區集設計,重複4次。施藥時以10公升局背式之噴霧器噴施全株,並於施藥前一天及施藥後3天及6天各小區隨機取樣20株芥藍菜,調查整株存活斜紋夜蛾幼蟲數,並換算防治率。

結 果

- 一、台灣花薊馬(Franklinilla intonsa Trybom)與番茄斑潛蠅(Liriomyza bryoniae (Kaltenbach)) 之非農藥防治
 - 1.水盤及粘板不同顏色、高度誘捕台灣花薊馬與番茄斑潛蠅效果觀察

6種不同顏色水盤及粘板個分為4種不同高度,經連續18次調查結果,對於台灣花薊馬之誘捕效果,粘板不同顏色間以距地面0cm之白色及黃色粘板分別捕獲52.2及39.3隻/片/週為最多;不同高度間各顏色均以距地區0cm之誘捕蟲數最多(表一);水盤不同顏色間以藍色、黃色及白色水盤分別捕獲53.7、44.3及43隻/盤/週為最多;不同高度間,各顏色亦均以距地面0cm誘捕蟲數最多(表一)。對於番茄斑潛蠅之誘捕效果,粘板不同顏色間以距地面0cm之黃色粘板誘捕82.8隻/片/週最多;不同高度間,除黑色粘板外,其餘5種顏色粘板均以距地面0cm之黃色粘板數最多(表二);水盤不同顏色間以距地面0cm之黃色水盤50.9隻/盤/週最多;不同高度間,各顏色水盤均以距地面0cm之誘捕蟲數最多(表二)。由表一顯示藍色、白色及黃色粘板對台灣花薊馬具有誘引效果。由表二顯示黃色水盤及粘板對番茄斑潛蠅具有誘引效果,其放置高度與誘捕蟲數成反比,以接近地面為宜。

表一 不同顏色粘板、水盤不同高度對台灣花薊馬之誘捕效果

Table 1. Effect of colors and height of placement of sticky card and water pan on trapping *Frankliniella* intonsa.

- 一		誘捕蟲數/片(盤)/週										
高度 (公分)	黃色	白色	綠色	紅色	藍色	黑色						
(A))	粘板 水盤	粘板 水盤	粘板 水盤	粘板 水盤	粘板 水盤	粘板 水盤						
0	39.3 ^{a1} 44.3 ^a	52.2 ^a 43.0 ^a	22.1 ^a 36.1 ^a	16.6 ^a 28.7 ^a	14.1 ^a 53.7 ^a	5.0 ^a 24.9 ^a						
50	20.3 ^b 34.3 ^b	20.9 ^b 34.2 ^b	11.8 ^b 24.1 ^{ab}	11.7 ^b 21.1 ^{ab}	13.1 ^b 28.4 ^b	3.2 ^b 13.6 ^b						
100	15.7 ^b 26.3 ^{bc}	13.7 ^b 25.4 ^{bc}	10.2 ^b 15.3 ^b	$9.9^{b}\ 22.8^{ab}$	11.5 ^b 27.2 ^b	3.6^{b} 10.9^{b}						
150	13.6 ^b 18.7 ^c	10.8 ^b 21.1 ^c	$8.7^{b} 14.2^{b}$	8.6 ^b 14.3 ^c	$7.0^{b} 22.5^{b}$	3.5 ^b 10.2 ^b						

Numbers in each column followed by the same letter are not significantly different at 5% level by Duncan s multiple range test.

表二 不同顏色粘板、水盤不同高度對番茄斑潛蠅之誘捕效果

Table 2. Effect of colors and height of placement of sticky card and water pan on trap ping *Liriomyza bryoniae*.

高度		誘捕蟲數/片(盤)/週											
回及 (公分)	黃色	白色	綠色	紅色	藍色	黑色							
$(\Delta' \mathcal{I})$	粘板 水盤	粘板 水盤	粘板 水盤	粘板 水盤	粘板 水盤	粘板 水盤							
0	82.8 ^{a1} 50.9 ^a	1.4 ^a 19.8 ^a	1.7 ^a 18.5 ^a	2.9 ^a 8.3 ^a	1.2 ^a 7.6 ^a	0.7 ^{ab} 5.4 ^a							
50	28.0 ^b 14.9 ^b	0.3^{b} 9.8^{b}	1.0^{a} 9.9^{b}	$0.2^{b} \ 3.1^{b}$	0.2^{b} 2.7^{b}	1.1^{a} 0.7^{b}							
100	19.3 ^{bc} 9.7 ^c	0.3^{b} 5.5^{c}	0.3^{b} 4.4^{c}	0.2^{b} 2.3^{b}	$0.8^{b} 3.6^{b}$	0.7^{ab} 1.1^{b}							
150	12.6° 8.0°	0.2^{b} 4.8^{c}	1.2 ^a 4.1 ^c	$0.1^{b} 2.6^{b}$	0.4^{b} 2.0^{b}	0.4^{b} 0.6^{b}							

¹ See Table 1.

2.水盤、粘板誘捕薊馬、斑潛蠅蟲數與植株害蟲密度之關係觀察

經連續7次調查結果,對於薊馬之誘捕蟲數以黃色水盤395.8隻/盤/週最多,綠色粘板82.5隻最少,有顯著差異。距離誘引物5m植株上之蟲數以綠色粘板54.6最多,黃色水盤21隻最少,但差異不顯著;距誘引物10m植株上之蟲數各處理間均差異不顯著。對於斑潛蠅誘捕蟲數以黃色粘板895.5隻最多,綠色粘板17.8隻最少,有顯著差異,距誘引物5m及10m植株上之蟲數以綠色粘板分別為84.6隻及106隻最多,以黃色水盤分別為60.4隻及61.9隻最少,但各處理植株上之蟲數間均差異不顯著(表三)。

表三 水盤、粘板誘捕薊馬、斑潛蠅蟲數與植株害蟲密度之關係

Table 3. The relationship between the catches of *F. intonsa* and *L. bryoniae* with water pan and sticky card and the population density of the pests on pea plants.

誘捕蟲數 處理 (盤(片)/週)				達或粘板5m 故(10株)	距離水盤或粘板10m 植株屬數(10株)		
,	薊馬	斑潛蠅	薊馬	斑潛蠅	薊馬	斑潛蠅	
黄色水盤	395.8ª	805.1 ^{ab}	21.0ª	60.4ª	69.1 ^a	61.9ª	
黄色粘板	212.1 ^b	898.5 ^a	45.9 ^a	61.6 ^a	61.0 ^a	78.9^a	
白色水盤	362.4 ^a	282.4^{abc}	48.9^{a}	66.0^{a}	51.1 ^a	80.3 ^a	
白色粘板	303.9^{ab}	23.0°	48.9^{a}	62.3 ^a	50.6 ^a	81.1 ^a	
綠色粘板	82.5°	17.8°	54.6 ^a	84.8^{a}	55.1 ^a	106.0 ^a	

¹ Water pan or Sticky card/60 m².

3.台灣花薊馬與番茄斑潛蠅綜合防治試驗

藥劑與物理綜合防治,於1991年冬季連續三次調查結果,對於台灣花薊馬之防治效果,單獨使用2.8%畢芬寧E.C. 1,000倍之防治率三次平均為68%,但與黃色粘板配合施用之防治率可提高至84%以上(表四)。對於斑潛蠅之防治效果,75%賽滅淨W.P. 6,000倍防治率三次平均為96%,黃色粘板1片加畢芬寧1,000倍及銀色塑膠布加畢芬寧1,000倍二處理,於第三次調查時其防治率分別為65.2及73.9%(表四)。

二、瓜實蠅(Dacus cucurbitae Coq.)之非農藥防治

1.不同套袋材質對苦瓜瓜果發育及瓜實蠅防治效果觀察

供試之7種不同套袋材質於套袋10天後與不套袋對照區之瓜果比較,經調查5次結果,瓜果增加長度,可上市瓜果重量及擦傷、蟲咬、萎縮等畸型瓜率,處理間均無顯著差異,但被害瓜率以對照區30%最高,正常瓜率以對照區42%最低,與供試不同套袋材質處理間之差異達極顯著(表五)。由本項結果顯示,供試之7種不同套袋材質對苦瓜瓜果發育並無影響,對瓜實蠅均具有相同之防治效果。

2.不同套袋材質對絲瓜瓜果發育及瓜實蠅防治效果觀察

供試之5種不同套袋材質於套袋7天後與不套袋對照區之瓜果比較,經調查10次結果,瓜 果增加長度及裂開、擦傷、蟲咬、萎縮等畸型瓜率,處理間差異不顯著,被害瓜率以對照區

² See Table 1.

表四 豌豆上台灣花薊馬及番茄潛蠅綜合防治試驗

Table 4. integrated controls of *F. Intonsa* and *L. bryoniae* on pea plants.

	處理前		第一次施藥後7天				第二次施藥後7天			第三次施藥後7天			
處理	蟲	數	蟲數	蟲數防		j	蟲數		治率	蟲數		防治率	
	薊馬 ¹	斑潛蠅²	薊馬 斑潛蠅	薊馬	斑潛蠅	薊馬	斑潛蠅	薊馬	斑潛蠅	薊馬	斑潛蠅	薊馬	斑潛蠅
75% 賽 滅 淨 W.P. 6,000倍	7.4	10.0	5.0 ^{b³} 0.3 ^a	5.7	98	4.7 ^{bc}	2.3ª	78.9	90.5	21.3 ^d	0.0ª	0.0	100.0
2.8% 畢 芬 寧 E.C. 1,000倍	0.7	11.0	2.3 ^{ab} 10.7 ^b	56.6	26	4.0 ^{bc}	22.7°	82.1	8.0	3.7 ^b	21.0 ^{bc}	65.4	31.5
黄色水盤一個+畢 芬寧E.C. 1000倍	1.6	6.3	2.7 ^{ab} 17.3 ^c	49.1	0	3.3 ^b	26.7°	85.2	0.0	17.3 ^{cd}	17.0 ^{bc}	0.0	44.5
黄色粘板一片+畢 芬寧E.C. 1,000倍	3.7	2.7	0.3 ^a 17.7 ^c	94.3	0	0.7^{a}	30.7°	96.9	0.0	1.7ª	10.7 ^{ab}	84.1	65.2
黑色塑膠布+畢芬 寧E.C. 1,000倍	6.3	1.3	3.0 ^{ab} 12.3 ^{bc}	43.4	14	2.0^{ab}	43.3°	93.0	0.0	4.7 ^b	16.0 ^{abc}	56.1	47.8
銀色塑膠布+畢芬 寧E.C. 1,000倍	1.3	4.7	2.7 ^{ab} 12.3 ^{bc}	49.1	14	7.0°	15.0 ^b	68.6	39.0	4.0 ^b	8.0 ^{ab}	62.6	73.9
對照	2.7	1.0	5.3 ^b 14.3 ^{bc}	0.0	0	22.3 ^d	24.7°	0.0	0.0	10.7°	30.7°	0.0	0.0

¹ Means of 10 plants of adult and larva.

² Means of 10 plants of puap.

³ See Table 1.

48%最高,白色尼龍網袋區28%次之,正常瓜率亦以對照區24%最低,白色尼龍網袋區34%次之,與其他處理間之差異達極顯著(表六),由本項結果顯示,白色紙袋,白色耐濕紙袋及單層舊報紙袋,對絲瓜瓜果發育並無影響,對瓜實蠅均具有防治效果。

表五 不同套袋材質對苦瓜瓜果發育之影響及瓜實蠅之防治效果

Table 5. Effect of different bagging materials on the fruit development and the control of melon fly on bitter gourd.

套袋材質	調查瓜數	套袋10天後瓜果 平均增加長度	可上市瓜 果重量	瓜實蠅 為害率	畸型瓜 果率	正常瓜果率
		(cm)	$(kg/20m^2)$	(%)	(%)	(%)
單層黑色紙袋	200	13.61 ^a	2.69^{a}	2ª	28ª	70 ^a
硬牛皮紙袋	200	14.12 ^a	2.94^{a}	6 ^a	24ª	70 ^a
雙層紙袋	200	14.99 ^a	3.74^{a}	2ª	24ª	74 ^a
雙層舊報紙袋	200	13.48 ^a	3.43^{a}	6 ^a	20 ^a	74 ^a
黑色PE袋	200	13.68 ^a	3.70^{a}	0^{a}	24ª	76ª
褐色PP袋	200	15.52 ^a	4.54^{a}	0^{a}	22ª	78 ^a
綠色尼龍網袋	200	14.47 ^a	3.13^{a}	0^{a}	16 ^a	78 ^a
對照	200	12.10 ^a	2.41^{a}	30^{b}	28ª	42 ^b

¹ See Table 1.

表六 不同套袋材質對絲瓜瓜果發育之影響及瓜實蠅之防治效果

Table 6. Effect of different bagging materials on the fruit development and the control of melon fly on sponge gourd.

套袋材質	調查瓜數	套袋7天後瓜果 平均增加長度 (cm)	瓜實蠅為 害瓜率 (%)	畸型瓜果率 (%)	正常瓜果率 (%)
白色身袋	400	14.13 ^a	0^{a}	30 ^a	70ª
白色耐濕紙袋	400	15.24 ^a	0^a	28ª	72ª
單層舊報紙袋	400	14.76 ^a	2ª	30 ^a	68 ^a
透明PP袋	400	13.83 ^a	6^{a}	46ª	48^{ab}
白色尼龍網袋	400	14.41 ^a	28 ^b	38 ^a	34°
對照	400	13.78 ^a	48°	28 ^a	24°

^{1,2} See Table 5.

² Including cracked, bruised, shrank and insect damaged fruits.

表七 不同套袋材質防治瓜實蠅危害苦瓜之經濟效益評估

Table 7. Economic evaluation of the different bagging materials for the control of melon fly on bitter gourd.

套袋材資	產量	粗收益	套袋費²及工 資	採收及運費 ³	淨收益4	防治經濟 ⁵ 最 低價格	指數	
芸 花竹 貝	(NT\$/0.1ha)	(NT\$/0.1ha)	貝 (NT\$/0.1ha)	(NT\$/0.1ha)		心頂恰 (NT\$/kg)	產量	淨收益
雙層紙袋	2333ª	53333ª	1980	2333	49020	2.45	241	187
單層黑色紙袋	2116 ^{ab}	49550 ^{ab}	3300	2116	44134	3.87	219	168
雙層舊報紙袋	1933 ^b	42416 ^b	2220	1933	38263	3.29	200	146
對照	966°	27166°	0	966	26200	_	100	100

¹ See Table 1.

Doubl-layered newspaper-bag: One bag NT\$ 0.15× 480gab/0.1 ha ×10 times =NT\$ 720.

² Cost of paper-bag: Double-layered paper-bag: One bag NT\$ 0.5/5 times×480 bag/0.1 ha×10 times=NT\$ 480. Single-layered black paper-bag: One bag NT\$ 1.5/4 times×480 bag/0.1 ha × 10 times =NT\$ 1800.

³ Cost of labours: NT\$ 50/1 hr×3 hr/0.1 ha×10 times= NT\$ 1500.

⁴ Harvesting cost NT\$ 0.1/kg + transportation NT\$ 0.9/kg = NT\$ 1.

⁵ Gross retruns — Cost of paper-bag and laours — Harvesting cost and transportation. (Cost of paper-bag and labours + Harvesting cost and transportation over control)/Increased yield over control.

3.不同套袋材質對瓜實蠅防治效益之評估

苦瓜連續調查15次產量及批發價格,每公斤最高40元,最低15元,平均22.5元。絲瓜連續調查30次產量及批發價格,每公斤最高27元,最低10元,平均19.3元。換算成單位面積0.1公頃之產量及粗收益,扣除紙袋費及套袋工資後之純收益,苦瓜部份列如表七,絲瓜部份列如表八。苦瓜之產量及淨收益均以雙層紙袋最高,與各處理間之差異顯著,每0.1公頃之產量及淨收益比較對照區分別增加1,367公斤(141%)及22,820元(87%),其次分別為單層黑色紙袋,雙層舊報紙袋;絲瓜之產量及淨收益均以白色耐濕紙袋最高,比較對照區分別增加2,150公斤(172%)及35,000元(146%),白色紙袋之產量較單層舊報紙袋高,但淨收益單層舊報紙袋較白色紙袋高。由表七及表八顯示,苦瓜以單層黑色紙袋、雙層紙袋或雙層舊報紙袋,絲瓜以白色紙袋,白色耐濕紙袋或單層舊報紙袋實施套袋,均能達到防治瓜實蠅之目的,但苦瓜以雙層紙袋,絲瓜以白色耐濕紙袋之經濟效益最高。

表八 不同套袋材質防治瓜實蠅危害絲瓜之經濟效益評估

Table 8. Economic evaluation of the different bagging materials for the control of melon fly on sponge gourd.

	產量	粗收益	套袋費及	採收及	淨收益4	經濟防治 -	指	數
套袋材質	(kg/	(NT\$/	工資 ²	運費 ³	(NT\$/	最低價格5	* B	15.11.14
	0.1ha)	0.1ha)	(NT\$/ 0.1ha)	(NT\$/ 0.1ha)	0.1ha)	(NT\$/kg)	產量	淨收益
 白色耐濕紙袋	2400ª	66133ª			50022	2.01	272	246
	3400 ^a		3900	3400	58833	2.81	272	246
白色紙袋	3300 ^a	62916 ^a	6300	3300	53316	4.11	264	223
單層舊報紙袋	3233ª	62300 ^a	1980	3233	57087	2.00	258	239
對照	1250 ^b	25083 ^b	0	1250	23833	_	100	100

1,3,4,5 See Table 7.

2 Cost of paper-bag: White water-proof paper-bag: NT\$ 0.5×480 bag×10 times= NT\$ 2400

White paper-bag: NT\$ 1×480 bag \times 10 times = NT\$ 4800.

Single-layered newspaper-bag: NT\$ 0.1×480 bag \times 10 times = NT\$ 480.

Cost of labours: NT\$ $50 \times 3 \text{hr}/0.1 \text{ha} \times 10 \text{ times} = \text{NT}$ \$ 1500.

三、偽菜蚜(Lipaphis erysimi (Kaltenbach))之非農藥防治

第一次試驗於施藥後1、3、6及9天調查結果,洗潔精200倍於施用後第6天之防治率為78.5%,而洗潔精200倍加酒精200倍加海草精500倍之防治率高達91.6%(表九)。第二次試驗於施藥後1、2、5及7天調查結果,洗潔精200倍於施用後第5天之防治率為80.4%,第7天之防治率為32.2%,但告酒精200倍同時施用之防治率為71.5%(表十)。由本試驗結果顯示洗潔精200倍對於甘藍偽菜蚜具有防治效果,如果與酒精與海草精混合同時施用,防治效果也許會更好。

四、斜紋夜蛾(Spodopter litura Fabricins)之非農藥防治

7種處理於施藥後第6天調查結果,蘇力菌2000倍之防治率為100%,洗潔精200倍+酒精200倍之防治率為0%,但混合樟腦油200倍同時施用之防治率則達到83%(表十一)。顯示蘇力菌單獨使用及洗潔精加酒精加樟腦油同時施用對斜紋夜蛾具有防治效果。

表九 甘藍自然發生蚜蟲非農藥防治試驗

Table 9. Non-chemicals control of natural occurrence aphis on cabbage.

處理別	施藥前 蟲 數		施藥後第三天		施藥後第六天		施藥後第九天		
	(蟲/株)	蟲數	防治率	蟲數	防治率	蟲數	防治率	蟲數	防治率
1.糖醋液200倍	345	343 ^{abc}	0.8	494 ^{abc}	0.0	989°	0.0	1594ª	0.0
2.糖醋液300倍	416	463 ^{bc}	0.0	610 ^{bc}	0.0	952 ^{bc}	0.0	1030°	0.0
3.酒精200倍+	578	6 ^a	98.9	26 ^a	95.5	79ª	86.4	295ª	49.1
洗潔精200倍									
4.洗潔精200倍	562	32^a	94.3	49 ^a	91.3	121 ^{ab}	78.5	658 ^a	0
5.菸草300倍	739	189 ^{ab}	74.5	279^{ab}	62.3	684 ^{abc}	7.5	734 ^a	0.7
6.樟腦油300倍	564	520 ^{bc}	7.8	588 ^{bc}	0.0	999°	0.0	941 ^a	0.0
7.魚精500倍	712	432 ^{bc}	39.4	352^{ab}	50.6	306^{abc}	57.1	425 ^a	40.4
8.海草精500倍	703	243^{ab}	65.5	334^{ab}	52.6	331 ^{abc}	52.7	941ª	0.0
9.酒精200倍+	549	17ª	97.0	7 ^a	98.8	91ª	73.5	367ª	33.3
魚 500 倍 + 洗 潔 精200倍									
10.酒精200倍+	379	69ª	82.0	11ª	97.3	32ª	91.6	130 ^a	68.3
海草精500倍+ 洗潔精200倍									
11.對照	369	742°	0.0	926°	0.0	589 ^{abc}	0.0	665 ^a	0.0

See Table 1.

表十 甘藍接蚜蟲後非農藥防治試驗

Table 10. Non-chemicals control of artifical inoculation of aphis on cabbage.

處理別	施藥前 蟲 數			施藥後第二天		施藥後第五天		施藥後第七天	
	(蟲/株)	蟲數¹	防治率	蟲數	防治率	蟲數	防治率	蟲數	防治率
1.糖醋液200倍	79.3	71.5 ^t	9.9	60.1 ^e	24.3	45.8 ^{cd}	42.3	48.6 ^{bc}	38.8
2.糖醋液300倍	53.1	$51.0^{\rm e}$	4.0	64.5 ^e	0.0	71.0^{de}	0.0	79.8^{d}	0.0
3.酒精200倍+	54.8	2.3^{a}	93.9	2.1^{a}	96.2	7.5 ^a	86.4	15.6 ^a	71.5
洗潔精200倍									
4.洗潔精200倍	55.0	5.8 ^{ab}	89.5	7.1 ^{ab}	87.1	10.8 ^{ab}	80.4	26.3^{ab}	32.2
5.菸草300倍	76.1	24.0 ^{bcb}	68.5	22.0^{c}	71.1	57.3 ^{cde}	24.8	64.6 ^{cd}	15.2
6.樟腦油300倍	70.8	18.8abc	735	18.1 ^{bc}	74.4	18.8ab	73.5	60.8 ^{cd}	14.2
7.魚精500倍	79.5	38.8^{de}	51.2	40.6^{d}	48.9	53.8 ^{cbe}	32.4	61.0 ^{cd}	23.3
8.海草精500倍	54.8	44.3 ^e	19.2	37.8^{d}	31.1	34.8bc	36.5	54.5 ^{cd}	0.6
9.美文松500倍	63.0	0.0^{a}	100.0	0.0^{a}	100.0	1.0^{a}	98.5	2.6^{a}	95.9
10.對照	70.3	33.3 ^{cbe}	52.7	55.8e	20.7	73.8 ^e	0.0	74.1 ^{cd}	0.0

¹ See Table 1.

表十一 芥藍菜斜紋夜蛾非農藥防治試驗

Table 11. Non-chemicals control of *S. litura* Fabricins on kale.

	施藥前 _	施棄	溪後3天	施藥	施藥後6天		
處理別	蟲 數 (蟲/株)	蟲數	防治率(%)	蟲數	防治率(%)		
1.蘇力菌2000倍	0.2	0.2ª	90	0.0^{a}	100		
2.菸草300倍+洗	1.4	0.8^{ab}	60	1.2 ^b	0		
潔精200倍+酒							
精200倍							
3.洗潔精200倍+	0.6	1.2 ^{ab}	40	1.5 ^b	0		
酒精200倍							
4.糖醋液300倍+	4.8	0.2^{a}	90	0.6^{ab}	50		
洗潔精200倍+							
酒精200倍							
5.樟腦油200倍+	1.4	0.6^{a}	70	0.2^{a}	83		
洗潔精200倍+							
酒精200倍							
6.蘇力菌2000倍+	0.8	0.4^{a}	80	0.2^{a}	83		
洗潔精200倍+							
酒精200倍							
7.對照	1.2	2.0 ^b	0	1.2 ^b	0		

1 See Table 1.

討 論

台灣花薊馬及番茄斑潛蠅自豌豆播種後約20天至採收完畢皆可危害,據王氏60報告,台 灣花薊馬之食性甚廣,有正式記錄之寄主植物有25科。據Spencer⁽²⁸⁾報告,番茄斑潛蠅為一高 度雜食性害蟲,被害作物多達36科。或許由於此2種害蟲之高度雜食性,寄主植物全年不缺, 或因其他因子的關係,目前已成為本省農作物栽培之重要害蟲(5,11,12,13,19,22)。黃色點板及水盤 置於豌豆畦面上,雖然可以誘捕大量台灣花薊馬成蟲、若蟲及番茄斑潛蠅成蟲,但根據於豌 豆田進行誘捕蟲數與植株害蟲密度關係調查結果,距離誘引物5m及10m植株上之害蟲密度間 均差異不顯著(表三)。據王等⁽⁷⁾報告,黃色粘板及水盤雖可誘捕相當數目的斑潛蠅,但在廣闊 的田間,影響害蟲族群密度的因素甚多,粘板及水盤的使用效果難以依蟲體田間密度而做出 正確的估測,誘捕蟲數固可做為防治效果的參考依據,然而實際可發揮的防治效果尚受其他 諸如族群存在密度,幼蟲當時發育速度等因素左右。據鄭氏(19)報告,單獨以黃色粘板或水盤 誘殺斑潛蠅成蟲之防治效果不顯,但與藥劑防治併用,則可以增加其防治效果。豌豆為連續 性採收作物,每隔3-4天即需採收一次,採收期長達60餘天,農藥殘留是很棘手的問題。為了 經濟安全有效防治台灣花薊馬及番茄斑潛蠅,建議於豌豆整個生育期在大面積栽培區,每隔 2-5m放置黃色粘板或水盤,大量誘殺該二種害蟲,以抑止其侵入與繁殖⁽⁵⁾,並於發現薊馬或 斑潛蠅為害時區用75%賽滅淨(Cyromazine) W.P. 6,000倍加2.8%畢芬寧或賽洛寧E.C. 1,000 倍,施藥後4天採收,即可防治台灣花薊馬、番茄斑潛蠅及其他豌豆害蟲。

瓜實蠅為瓜類之主要害蟲,由於該蟲具有很強的遷移性,可由數公里至十數公里外地

區侵入瓜園為害^(1,2,8),且成蟲棲息於田間之各種處所,夜間停留於瓜園周圍之植物或作物上而於晨間始侵入瓜園產卵^(10,26),對於任何發育期之苦瓜及絲瓜均可危害,瓜果曝露於田間之時間越長,遭受瓜實蠅危害之機會越大越嚴重^(3,4)。瓜實蠅之防治方法很多,滅雄處理及利用不妊性蟲技術曾獲成功實例^(14,16),但過於費錢費時⁽⁹⁾,農民不易倣效實施。農藥防治雖可降低瓜果被害率,但誘殺效果在一小時內達最高峰,二小時後便趨微弱⁽¹⁰⁾。套袋在作物栽培上,為一種人為的方法提昇產品品質及保護產品避免遭受病蟲侵害的手段之一⁽¹⁸⁾,利用套袋來生產苦瓜及絲瓜避免遭受瓜實蠅危害已普遍為農民接受,但苦瓜及絲瓜之價格經常暴漲暴跌,為考量最低經濟防治成本,建議當批發價每公斤3元以上時,每3天巡視瓜園一次,發現苦瓜瓜長4-6公分時,以雙層紙袋或雙層舊報紙實施套袋,發現絲瓜瓜長5-7公分時,以白色耐濕紙袋或單層舊報紙實施套袋。

據謝氏⁽²¹⁾指出肥皂、酒精噴於葉片下表面可以防治葉和蚜蟲。本偽菜蚜非農藥防治於玻璃網室內,以白蘭洗潔精200倍進行試驗,施用後6天調查其防治率為78.5%,如與酒精200倍 +海草精500倍混合使用,其防治率可達到91.6%,但在田間之防治效果有待進一步探討。

蘇力菌具有產生孢子及多種毒素,包括內毒素與外毒素之生物特性⁽¹⁷⁾。對昆蟲綱有7目 43科的害蟲有致病性,本省於1958年嚴奉琰氏引進蘇力菌商品後,即進行防治蔬菜的白粉蝶、小菜蛾、擬尺蠖、夜盜蟲及切根蟲等試驗⁽²³⁾,據李氏⁽¹⁵⁾報告。蘇力菌已居農民使用之18種藥劑之第6位。蘇力菌製劑在田間使用上,會受各種因素之影響,因而降低殺蟲效力,尤其是施用後24小時內最為重要,陽光照射以及雨水的沖刷是降低活性孢子的主要因素,而陽光的作用之影響最為劇烈⁽¹⁷⁾。蘇力菌在日光下曝晒48小時後其活性失去90%^(23,25),以往由於其效果緩慢,作用機制不明顯,以及價格與穩定性之考量,多半與化學性殺蟲劑混合使用⁽²⁰⁾。為達到非農藥防治害蟲之目的,增強蘇力菌在田間之使用效率,建議配合展著劑於下午陽光較弱時進行,若須與殺菌劑混合使用,要慎加檢定相溶性,以免降低蘇力菌的殺蟲效用⁽¹⁷⁾。配製藥液的水以中性為佳,若太酸太鹹時宜加用中和劑至中性,同時混拌均勻,大面積施用時宜採用動力噴霧器,小面積施用時,則多用背囊式噴霧器,考慮昆蟲的食性及習性⁽²³⁾,均勻噴施於害蟲棲息及取食的地方,以利被食入而發揮效果。

參考文獻

- 1. 方敏男 章加寶 1986 瓜實蠅對絲瓜之危害及防治研究 台中區農業改良場研究彙報 13:37-42。
- 2. 方敏男 章加寶 1987 瓜實蠅在苦瓜園之族群消長、危害及套袋防治觀察 植保會刊 29:45-51。
- 3. 方敏男 章加寶 黃蘚 1988 使用套袋方法防治瓜實蠅危害苦瓜及絲瓜之效益評估 植保會 刊 30:210-221。
- 4. 方敏男 1989 不同套袋材質防治瓜實蠅危害苦瓜及絲瓜之研究 台中區農業改良場研究彙報 25:3-12。
- 5. 方敏男 1992 番茄斑潛蠅(Liriomyza bryoniae (Kaltenbach))在豌豆上之族群變動與防治試驗台中區農業改良場研究彙報 36:17-28。

- 6. 王清玲 1987 薊馬為害花卉之習性及其防治 p.37-43 中華昆蟲特刊第一號。
- 7. 王清玲 林鳳琪 1992 黃色粘板之誘捕非洲菊斑潛蠅(*Liriomyza trifolii* (Burgess))之效果測定中華農業研究 41(1):61-69。
- 8. 田中章 1983 在鹿兒島縣喜界島的瓜實蠅防治事業經過 今月 農藥-農業技術 資材12月 號。
- 9. 朱耀沂 1989 瓜實蠅之不妊性防治 p.144-160 中華昆蟲特刊第四號。
- 10. 李錫山 1975 不同施藥時間防治瓜實蠅比較試驗 台灣農業季刊 11(4):72-76。
- 11.李錫山 呂鳳鳴 溫宏治 1989 番茄斑潛蠅Liriomyza bryoniae (Kaltenbach)之生態及防治 p.53-57 中華昆蟲特刊第四號。
- 12. 李錫山 1990 番茄斑潛蠅(*Liriomyza bryoniae* (Kalt.))在不同作物之為害及對寄生蜂之影響中華昆蟲 10:409-418。
- 13. 李錫山 溫宏治 呂鳳鳴 1990 番茄斑潛蠅(Liriomyza bryoniae (Kaltenbach))在台灣之發生調 查 中華昆蟲 10:133-142。
- 14. 李文蓉 1978 東方果實蠅之生態與防治 昆蟲生態與防治(蘇等合編) p.19-26 中研究動物 所專刊第三號。
- 15. 李國欽 1984 蔬菜中殺蟲劑殘留問題及其防止 p.116-133 蔬菜害蟲研討會專刊 台灣省政府農林廳編印。
- 16.松本義明 1984 誘引劑對農業害蟲的利用 今月 農藥-農業技術 資材12月號 p.95-101。
- 17. 候豐男 1989 蟲生病原防治小菜蛾 p.46-52 中華昆蟲特刊第四號。
- 18. 楊耀祥 古德業 1984 果實套袋技術 農民淺說 292A-園藝58 行政院農業委員會及台灣 省政府農林廳編印。
- 19. 鄭清煥 1992 為害洋香瓜之番茄斑潛蠅的生態及防治研究 p.7 中華昆蟲學會第13屆年會專刊。
- 20. 鄭允 高靜華 1989 小菜蛾之化學防治與抗藥性 p.45-27 中華昆蟲特刊第四號。
- 21.謝慶芳 1990 作物有機栽培要領 台中區農推專訊 109。
- 22. 蕭旭峰 吳文哲 1989 台灣斑潛蠅屬害蟲之分類研究 中華昆蟲 9(2):302。
- 23. 蕭文鳳 1984 蘇力菌在十字花科蔬菜害蟲防治之應用 p.173-197 蔬菜害蟲研討會專刊 台灣省政府農林廳編印。
- 24. Johnson, M.W. and A.H. Hara. 1987. Influence of host crop on parasitoids (Hymenoptera) of Liriomyza spp. (Diptera: Agromyzidae). Environ. Entomol. 16:339-344.
- 25. Leong, K.L., R.G. Cano and A.M. Kabinski. 1980. Factors affecting *Bacillus* thuringiensis total field persistence. Environ. Entomol. 9:593-599.
- 26. Nishida, T. and H.A. Bess. 1951. Applied ecology in melon fly control. Jour. Econ. Entomol. 43(6):877-883.

- 27. Oatman, E.R. and A.E. Michelbacher. 1959. The melon leaf miner, *Liriomyza*-Pictella (*Thomson*) (*Diptera: Agromyzidae*) II. *Ecological Studies. Ann. Entomol. Soc. Am.* 52:83-89.
- 28. Spencer, K.A. 1973. Agromyzidae (Diptera) of Economic Importance. p.209-214. In: D.W. Junk. (ed). Series Entomlogica. 9. The Hague.

Non-chemical Control of Insect Pests in Vegetable Crops

Min-Nan Fang, Yueh-Chu Liu and Su-Ying Tseng

Taichung District Agricultural Improvement Station

ABSTRACT

Placing yellow sticky card and water pan at ground level in pea field could simultaneously trapping large amount of adult and larva of F. intonsa as well as the adult of L. bryoniae. There is no significant difference in population density of insect pests between 5 and 10 meter distance apart from trapping treatments. Placing one yellow water pan or one yellow sticky card at 4 m intervals, combined with the application of 2.8% Bifenthrin E.C. 1,000 X could increase trapping effect. It is revealed that use yellos water pan or sticky crad alone for control of F. intonsa and L. bryoniae didn't have satisfactory result. It must be combined with insecticide for further reduced the insect damage. Bagging the young fruits of bitter gourd when it reached 4-6 cm in length by double layers of paper bag (outer layer is brown kraft paper, inner layer is black simile paper) or double layers of used newspapers for control of D. cucurbitae. It could increase fruit yield and net income by 141 and 87%, respectively. When the fruits of sponge gourd reached 5-7 cm in length, bagging the fruits by white water-proof paper bag or one layer of used paper bag could also prevent the infection of D. cucurbitae. This practice could increase fruit yield and net income by 172 and 146%, respectively. Application of detergent diluted at 200 X solution have 78.5% of control effect on L. erysimi in the glass nethouse at the 6 days after spraying. B. thuringiensis 2,000 X have 100% of control effect on S. liture at 6 days after application in PE film facility.

Key words: Non-chemical control, Insect pests.