趣譚律賓參加

種子品質管理工作物

農試所種原組 曾馨儀

一、前言

種子品質管理工作坊 (Seed Quality Management Workshop) 係由國際農業研究諮商組織 (Consultative Group on International Agricultural Research, CGIAR) 所屬種原庫平台 (CGIAR Genebank Platform) 於2019年6月10日至6月14日在菲律賓國際水稻研究所舉辦。期間除進行各國際種原庫之種子品質管理交流,亦參訪國際水稻研究所 (International Rice Research Institute, IRRI) 種原庫管理及自動化種原管理設施,且由參與單位進行種原庫或種原保存相關研究成果介紹,並規劃未來種子品質管理之研究方向。

二、CGIAR基因庫平台簡介

CGIAR基因庫平台由作物信託基金會 (Crop Trust) 領導, CGIAR基因庫平台成員包含非洲水稻中心(Africa Rice Center, AfricaRice)等11個國際遺傳資源保存中心(圖一),其宗旨在保存、永續利用並提供足夠的植物遺傳資源, CGIAR基因庫平台支持各核心基因庫的運作,增進其種原保存效率、使用率並遵從國際規範。其中,11個國際遺傳資源保存中心分述如下:

(一) 國際乾旱地區農業研究中心(International Center for Agricultural Research in the Dry Areas, ICARDA)

保存145,000份品系,主要包含大麥、小麥、豆類與飼料作物之一般品系與野生種,來源主要來自肥沃月灣(Fertile Crescent),主要分布在兩個地區:摩洛哥主要保存大麥、鷹嘴豆、豇豆、小扁豆和小麥;黎巴嫩主要保存穀類及豆類作物野生種。ICARDA發展Focused Identification of Germplasm Strategy (FIGS) 技術提供給育種家及研究人員,以有效的方式在大量的種原中尋找有用的性狀。

作 者: 曾馨儀助理研究員 連絡電話: 04-23317810

(二) 國際水稻研究所(International Rice Research Institute, IRRI)

保存130,000份水稻及野生稻品系, 為改善世界飢餓與貧窮的重要研究機 構,致力於研究病蟲害、淹水、乾旱及 氣候變遷議題,並發展分子標誌系統, 以分子標誌進行有用基因開發。著重種 子保存及延長種子壽命研究,並導入自 動化設備提升種子處理效能。

(三) 國際熱帶農業中心(International Center for Tropical Agriculture, CIAT)

收集大量及多樣性的豆類 (38,000份 品系)、熱帶飼料作物 (23,000品系)與樹 薯 (6,600份品系)。CIAT以種子、田間及 組織培養保存這些作物。

(四) 非洲水稻中心 (Africa Rice)

由非洲國家所共同創立,進行水稻 保存與研究,擁有世界最多的非洲稻, 收集品系超過22,000份品系,85%源自 非洲,目標增加產量,確保非洲糧食安 全。

(五) 國際生物多樣性中心 (Biodiversity International)

負責國際芭蕉屬種原轉運中心 (International Musa Transit Centre),擁有 約1,500個芭蕉品系,並以組織培養與超 低溫保存種原。

(六) 國際馬鈴薯中心(International Potato Center, CIP)

CIP為世界上保存最多馬鈴薯、甘 藷、根莖類作物及馬鈴薯野生種,主要 以體外保存 (in vitro) 及超低溫長期保 存。在食物及營養安全上具有很大的貢 獻,並致力於研究馬鈴薯與番薯等對於 極端氣候的韌性、病蟲害、高產及高營 養價值等議題。

圖一、CGIAR國際遺傳資源保存中心分布。AfricaRice位於象牙海岸 (Cote d'Ivoire);IITA位於奈及利亞 (Nigeria);Bioversity International位於比利時 (Belgium);CIMMYT位於墨西哥 (Mexico);ICARDA位於摩洛哥 (Morocco) 與黎巴嫩 (Lebanon);CIAT位於哥倫比亞 (Colombia);ICRISAT位於印度 (India);ILRI位於衣索比亞 (Ethiopia);CIP位於秘魯 (Peru);IRRI位於菲律賓 (the Philippines);ICRAF位於肯亞 (Kenya)。

(七) 國際玉米小麥改良中心

(International Maize and Wheat Improvement Center, CIMMYT)

擁有豐富的小麥(153,000份)與玉米(28,000份)種原。致力於玉米與小麥研究,以增進全球糧食安全及降低貧窮。 重視農業育種、社會經濟與農業推廣, 以創造持久影響的解決方案,並關注氣 候變遷、飢餓與營養、農村社區發展與 環境。

(八) 國際農業森林研究中心(World Agroforestry Centre, ICRAF)

主要開發及推廣混林農業(agroforestry)技術,保存馴化、部份馴化及野生樹種,這些樹種主要被利用於混林農業系統,以提供水果、木材、醫藥及其他產品。以種子保存的樹種保存超過190種(species),43種保存於田間。

(九) 國際半乾旱地區熱帶作物研究所 (International Crops Research Institute for the Semi-Arid Tropics, ICRISAT)

主要保存125,000份鷹嘴豆、花生、小米、珍珠粟、大豆、木豆(樹豆),高粱最多,佔39,000份。ICRISAT並發展迷你核心種原,協助育種家開發有用性狀。

(十) 國際熱帶農業研究所(International Institute of Tropical Agriculture, IITA)

保存的作物包含香蕉、樹薯、山藥、玉米、大豆等,以種子保存有23,000份,組織培養保存有9,000份。IITA對非洲的糧食生產、遺傳資源保存具有重大的貢獻。

(十一) 國際家畜研究所(International Livestock Research Institute, ILRI)

保存1,723種熱帶飼料作物共19,000 份品系,收集系的種類廣泛(超過1,000 種)且主要為野生種(97%)。種原特性調查主要著重在作物營養成分及抗病蟲害部分,以提供永續的農業發展。

三、IRRI種原庫參訪與種原庫自 動化設備介紹

IRRI種原庫保存130,000份水稻及野生稻品系,擁有世界最多多樣性的水稻收集系。種原庫保存型式可分成兩種:中期保存庫與長期保存庫。中期庫的條件為2-4℃,種子可分贈使用。長期庫的溫度為-20℃,種子作為長期保存。中期庫種子每5年會進行活力檢測,長期庫種子則10年進行一次活力檢測,若種子發芽率低於85%則進行種原繁殖更新。IRRI種原庫將95%種原異地備份於美國國家遺傳資源保存中心(National Center for Genetic Resources Preservation)及挪威斯瓦爾巴全球種子庫(Svalbard Global Seed Vault)。

種原庫的入庫流程為:種原繁殖或 更新至足夠數量,將收獲的種子置於網 袋放置於起始乾燥室以相對濕度30%及 40℃乾燥3天(圖二),再將種子置於乾燥 室以相對濕度10-15%及15℃進行乾燥。 接著將種子以風選機進行風選,風選 完以人工或自動化機器進行精選,精選 完種子放置於紙袋,再置入乾燥室以相 對濕度10-15%及15℃進行最後乾燥。乾 燥完成的種子檢測含水率,一部分進行發芽試驗測試入庫前發芽率,一部分進行種子健康檢查,剩餘種子以鋁箔袋進行包裝後置入長期庫及中期庫儲藏(圖三),每包種子約10克。樣品在整個流程

圖二、IRRI種原庫乾燥室,收獲種子以網袋進行第一次乾燥(上),精選後以紙袋包裝進行第二次乾燥(下)。乾燥室溫度15℃,相對溼度15%。

皆以條碼掃描進行系統紀錄,在電腦系統上可得知每份種子的狀態及資料。

在種子精選部分,除人工外設有種子自動樣品選別機(圖四),以參考樣品作為標準,以種子之大小、長、寬和顏色進行判斷,以影像資料判別,剔除不良種子,一次可放置8組樣品。

依據參考樣品的顏色、長度、寬度、形狀等進行種子判別,可取代部份人力,節省30-40%人力。機器可24小時運轉,一天可處理1百萬顆水稻,縮短種子收獲至儲藏的處理時間,因種子在外面暴露的時間越長,對種子的品質及壽

圖三、IRRI種原庫。(上) 中期儲藏庫儲存於 2-4℃, 種子用於分贈。(下) 長期儲藏庫, 儲存於-18--20℃, 種子用於長期保存。

命越有害。但種子自動樣品選別機也有 其限制,無法處理有芒水稻種子或有色 種子,在判別上也有少許誤差,仍需人 力再次檢視,因此無法完全取代人力, 但未來持續改良儀器設備或許可再提高 自動化儀器的效能。

在種子發芽部分,有人工發芽及自動發芽系統,以人工進行發芽率檢測是以捲紙法進行種子發芽,中期庫種子每品系檢測100顆x2重複。種子取出後以放置於烘箱50℃5天打破休眠,接著放置於室溫(28-30℃)2-3天,接著將種子置於濕濾紙上,捲起後置於烘箱以30/20℃,12/12小時相對溼度100%,7天後紀錄一次發芽率,未發芽的14天後再紀錄一次發芽率,未發芽的14天後再紀錄一次。除人力使用捲紙法進行發芽率檢測外,亦使用自動化發芽檢測系統檢測種子發芽率(圖五),自動發芽室最多可放置720個發芽盤,自動化儀器可自動拍攝發芽盤影像,並以電腦軟體進行影像分析,計算發芽率、發芽時間/速度。

四、介紹種原庫及研究成果

除我國種原中心向各參與者介紹 我國國家作物種原中心之遺傳資源保存 外,其他參與單位如亞蔬-世界蔬菜中心 (World Vegetable Center, WorldVeg)、韓國 種原庫等介紹其種原庫之營運與研究。

亞蔬-世界蔬菜中心保存之種子包含 大豆、甜椒、番茄等共4百個蔬菜物種, 種原庫持續協助開發種國家如非洲的蔬 菜種原提供,持續加強與農民、育種家 及種子公司的合作。然而,種原保存遭 遇種子保存壽命的問題,因經費及人員 短缺,希望運用科技及科學知識以降低 種子活力檢測的成本,提高種子品質。

圖四、種子自動樣品選別機。存於-18--20℃, 種子用於長期保存。

圖五、自動化檢測發芽率之發芽盤(上)與發芽 設施(下),每個發芽盤可放置50顆種子,一次 可放置720組發芽盤,放於發芽室後可自動拍 攝影像,紀錄種子逐漸發芽情形。

韓國農村振興廳(Rural Development Administration, RDA)之種原保存如我國種原庫,保存糧食作物、園藝作物、飼料作物等各式種子,以糧食作物為主,具有完善的人力及設備保存種原,除中期庫及長期庫外,保存方式還有超低溫保存、組織培養及DNA庫,研究方面發展非破壞性近紅外光譜技術檢測種子活力。

菲律賓大學(University of the Philippines Los Baños, UPLB)報告以影像為基礎的形狀及顏色之外表型描述研究,因種子形狀及顏色等性狀變異大,或有時難以判斷其性狀分類,導致性狀描述錯誤,此研究以影像判斷為基礎,以主成分分析等方法,建立性狀描述的分類標準,提高性狀描述判斷的準確性。

英國雷丁大學 (University of Reading) Richard, Ellis教授及奧胡斯大學 (Aarhus University) Fiona, Hay教授介紹有關種子收獲、保存及壽命方面之研究。雖然降低種子含水率可增加種子保存壽命,但含水率低於某一臨界值時並不會增加其保存壽命,而不同物種有其含水率臨界值(3-7%),其臨界值的含水率可作為最適保存的含水率,一般在平衡相對濕度15% (eRH)可達到臨界值含水率,可作為種子保存之參考。

五、2020-2021計畫討論

會議中討論未來2020-2021之種子品質管理計畫之經費運用,並於2021年於

非洲水稻中心辦理種子品質研習會,會 議中歸納出幾個研究方向,將跨機構合 作進行研究:

- (一)種子休眠:研究如何克服禾本科種 子休眠性的問題,包含飼料作物、 野生種水稻等。
- (二)種子採後處理:進行種子收獲時間 的影響、乾燥方法、乾燥時間的研 究,以延長種子保存壽命。
- (三)種子壽命: Arachis spp.如花生等種子保存壽命短,將進行相關保存研究以延長種子保存壽命。
- (四)影像分析:使用影像分析技術 如近紅外線光譜 (near-infrared spectroscopy, NIR)、多光譜、x-ray等 技術,以增進改善種原操作,進行 種子活力、休眠性等相關試驗。

六、結語

經由本次研習活動,參觀IRRI種原庫完善之作業流程,檢視我國種原庫的營運困境,因經費及人力缺乏,致部分重要入庫步驟減化,如入庫前發芽率檢測、含水率檢測等。種原庫營運成本高,種種問題可能導致我國種原庫種原逐漸流失,建議未來需增加經費於種原庫營運,並投入種原保存相關研究,或與其他單位進行合作,增加種原利用性。並在種原操作流程上建立自動化系統,如非破壞性種子活力檢測、種子精選、種原特性調查等,節省人力資源。培育種原保存及繁殖人才,投入種原保存行列。