

行政院農業委員會優良農建評審小組

蒞臨指導

工作團隊

主辦機關

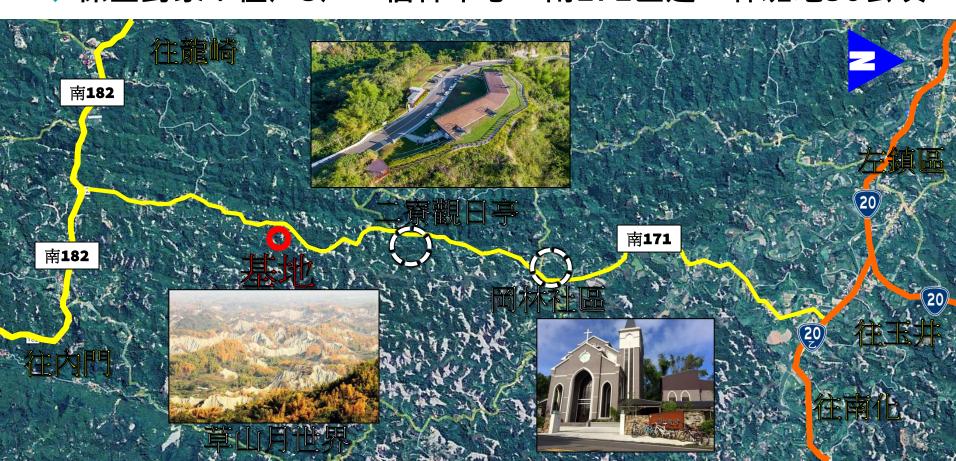
林務局嘉義 林區管理處

生態檢核

漢林生態顧問 有限公司

設計監造

勇霖工程顧問 有限公司


施工單位

盛祥營造 有限公司

工程緣起

- ◆ 行政區域:台南市左鎮區
- ◆ 林班地:玉井事業區第96林班
- ◆ 交通位置:台20 →台20乙→南171區道
- ◆ 保全對象:住戶5戶、信仰中心、南171區道、林班地30公頃

面臨課題(1/6)

◆ 既有土壩溢洪道損壞,整體功能喪失

面臨課題(2/6)

◆ 周邊沖蝕溝及山溝,造成既有土壩破堤改道

面臨課題(3/6)

◆上游邊坡土砂流失嚴重,造成擋土牆基礎裸露

面臨課題(4/6)

◆信仰中心地坪下陷龜裂

面臨課題(5/6)

◆ 坡趾土砂流失邊坡崩塌,影響上方南171區道,危及用路 人安全

面臨課題(6/6)

10

- ◆ 現有出入動線蟹洞分布生態良好不宜擾動
- ◆ 舊有農路坍方無法通行

|治理對策(1/3)

恢復防砂功能

老舊壩體年久失修損壞,喪失防砂功能

治理對策(2/3)

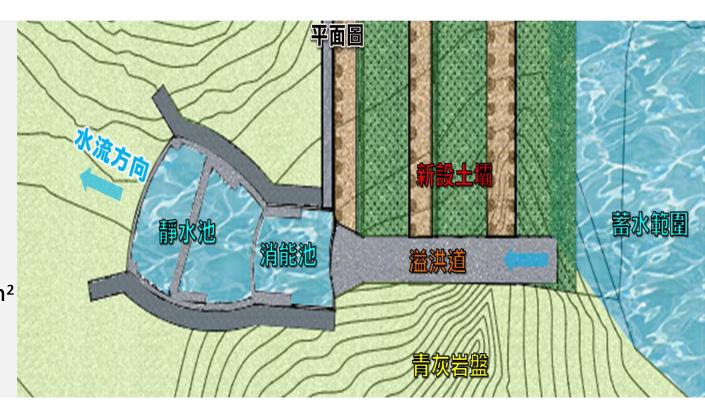
✓ 考量生態影響與環境破壞,工法採新建土壩

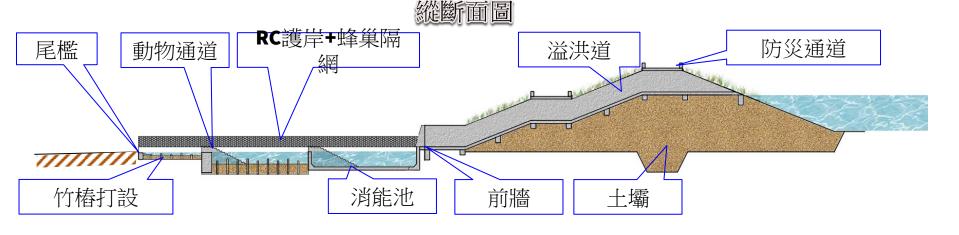
類型	河道治理	混凝土防砂壩	新建土壩
環境影響	施工範圍長	局部施工,影響小✔	局部施工,影響小 🗸
縱向落差	落差較小 🗸	高落差	緩坡 ✓
工期	工期較長 💢	工期最短 🗸	工期短 ✓
經費	經費較高 💢	經費較高 💢	經費少 ✓
材料使用	混凝土用量大 💢	混凝土用量大 💢	就地取材(青灰岩) ✓ 配合少量混凝土
額外效益	無	防砂效果及 穩定性較佳	儲蓄水源 融入自然景觀
綜合評估	環境影響較大 整體效益低	量體較大、經費高 與現地景觀衝突	經費最省、蓄水淤砂、生 態多元化、造林森火用水

壩址擇定提升治理成效

|治理對策(3/3)

- 舊壩周邊沖蝕溝及山溝,原址重建不利壩體穩定
- 重新尋找合適點設置土壩,確保壩體安全並提升工程效益


貳、 工程內容


工程說明

4

工程內容:

- (1)土壩:1座
- (2)溢洪道:27.5m
- (3)消能池:1座
- (4) 靜水池: 2座
- (5)前牆:30.5m
- (6) RC護岸: 31.7m
- (7)動物通道:6座
- (8) 土包袋溝:132m
- (9) 植栽:500株
- (10)種植草皮:1,375m²

參、 規劃設計

規劃理念

●保全上游住戶、當地 信仰中心及重要道路 18

- ●壩體就地取材
- ●鋼筋混凝土減量

- ●抑制上游土砂流失
- ●蓄水為旱季防災用水

節能減碳

玉井區第**96**林班 土砂防治工程 防災減災

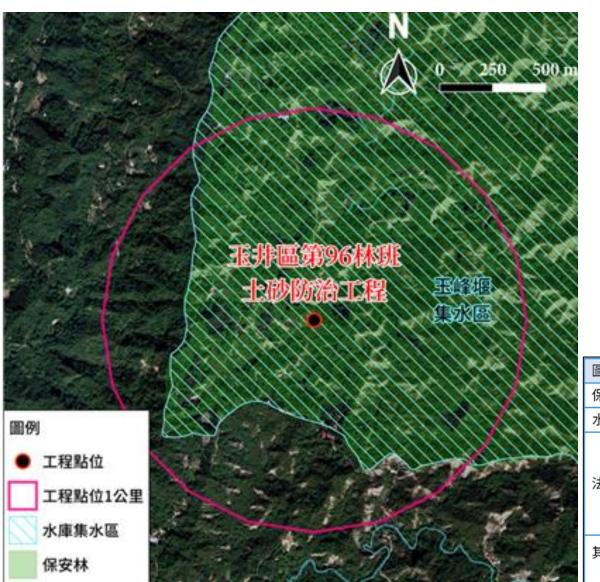
- ●施工前與地方民眾 横向溝通
- ●完工後與地方民眾 配合巡視維管

整合溝通

生態 友善

- ●設計融入當地景觀
- ●完工豐富當地生態

跨領域參與設計



工程生態情報圖

20

◆ 設計階段套繪重要生態敏感區域,避免破壞生態重要棲息地

圖層名稱		是否涉及
保安林		0
水庫集水區		0
	自然保留區	X
	野生動物保護區	X
法定生態保護區	野生動物重要棲息環境	X
法正土悲休 護區	自然保護區	X
	國家(自然)公園	X
	一級海岸保護區	X
其他重要生態敏感區	國家重要濕地	X
共心里安土您敬愿。	水庫蓄水範圍	X
	重要野鳥棲地(IBA)	X

生態審查會議

◆ 生態友善機制,人與生態共存

生態友善機制分級建議

第1類

第2類

第3類

棲地現況說明

生態情報圖

水域棲地:水量少,底質多為泥砂(泥岩地形)

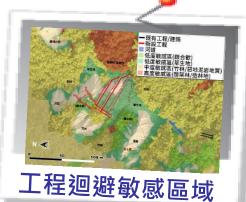
陸域棲地:草生地、竹林、銀合歡林

工區紀錄有樹鵲、黑枕藍鶲、白腰鵲鴝(外來種)、 台灣野兔,溝渠外側可見溪蟹洞穴

自然生態調查

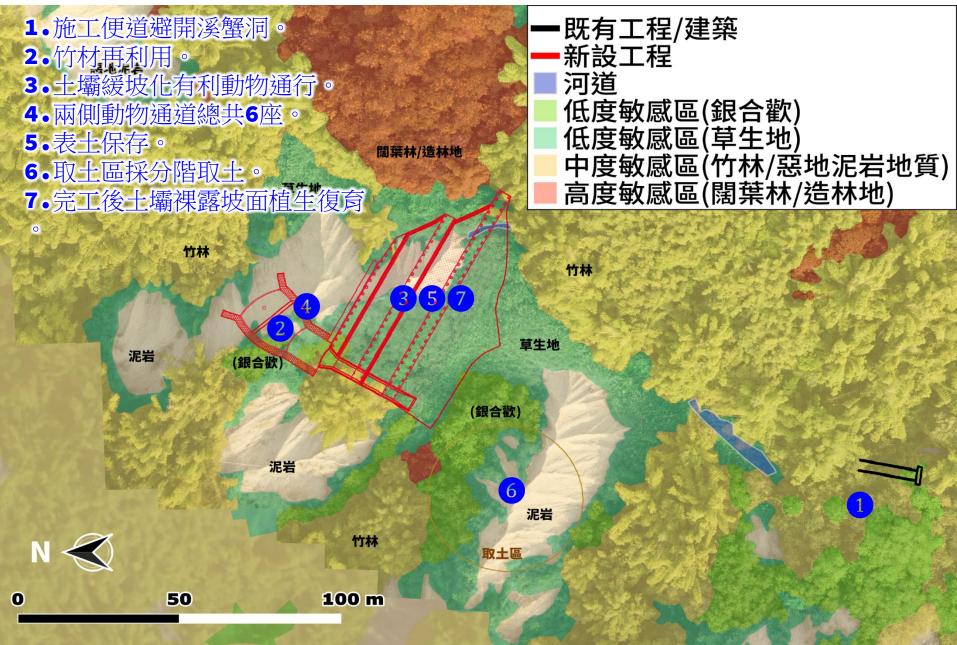
22

- ◆ 工程規劃設計與完工後加速植被恢復
- ◆ 工區內監測以哺乳類為主
- ◆生物勘查紀錄
 - 哺乳類:食蟹獴、白鼻心、赤腹松鼠、鼬獾、溝鼠
 - 、台灣獼猴、台灣野兔、山羌
 - 鳥類:臺灣竹雞、白腰鵲鴝、小彎嘴
 - ▶ 爬行類:斑龜、中華鱉


食蟹獴

赤腹松鼠

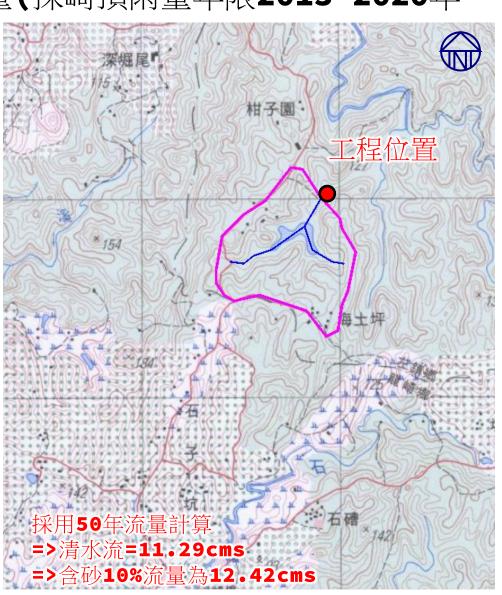
白鼻心



鼬獾

紀錄多種哺乳動物 —維持動物通行避免動物受困 紀錄有溪蟹洞穴 縮減干擾動物棲地範圍

生態友善方案



水文分析

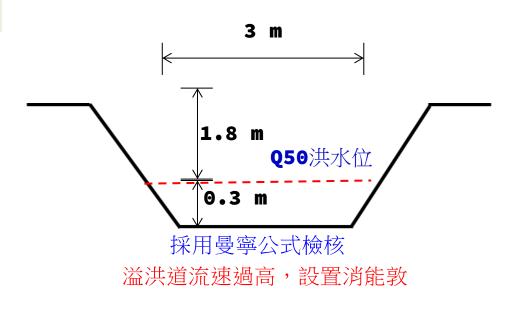
◆ 採合理化公式計算洪峰流量(採崎頂雨量年限2013-2020年

集水區參數設定	
集水區面積 (ha)	36
集流時間 (min)	4.32
50年降雨強度 (mm/hr)	150.55
逕流係數	0.75
Q50清水流 (cms)	11.29
Q50土砂流 (cms)	12.42

水理分析 (斷面檢核)

12.90cms,符合

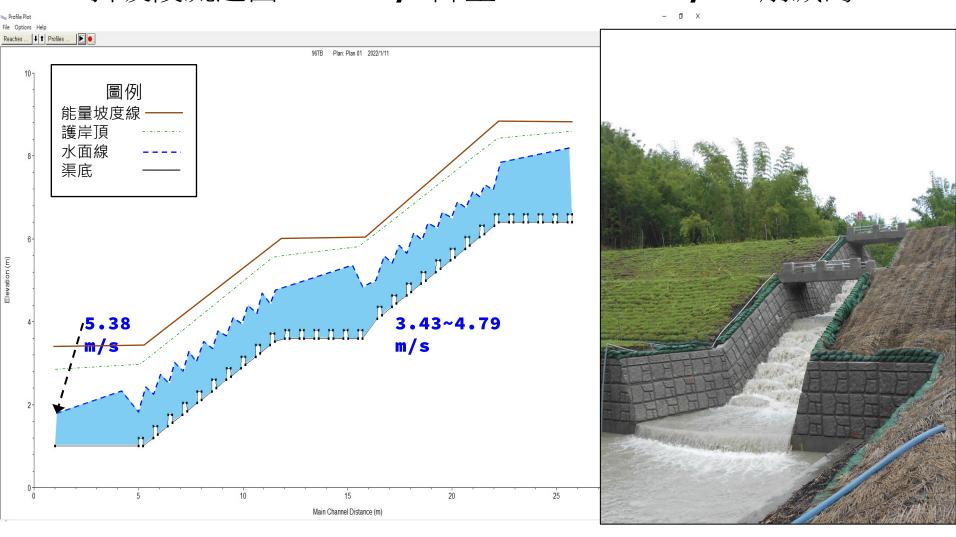
土壩溢洪口檢	
库 曾	3 . Om


3.0m
1.5m
0.6m
2.1m
12.42cms (含砂流流量)

設計通洪量

 	
	10.6 m Q50 洪水位
	1.5 m
採)	甲堰流公式檢核

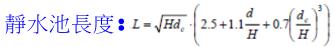
3 m


溢洪道檢核		
設計溢口底寬	3.0m	
設計溢流水深	0.3m	
設計出水高	1.8m	
流速	15.61m/s	
排洪需求量	12.42cms (含砂流流量)	
設計通洪量	14.40cms,符合	

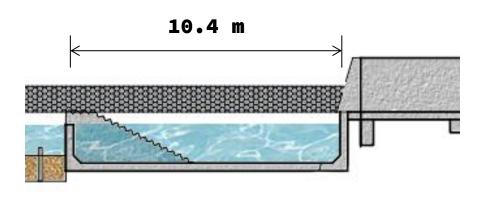
水理演算

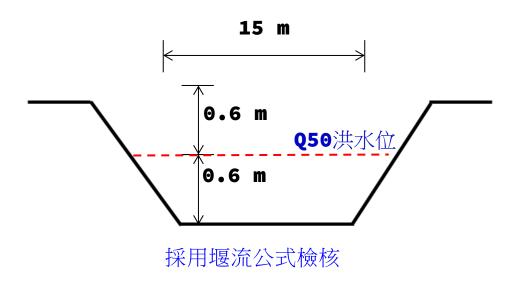
26

- ◆以hec-ras模擬設置消能墩之流況
- ◆ 斜坡段流速由15.61m/s降至3.43~4.79m/s, 削減約



水理分析(斷面檢核)

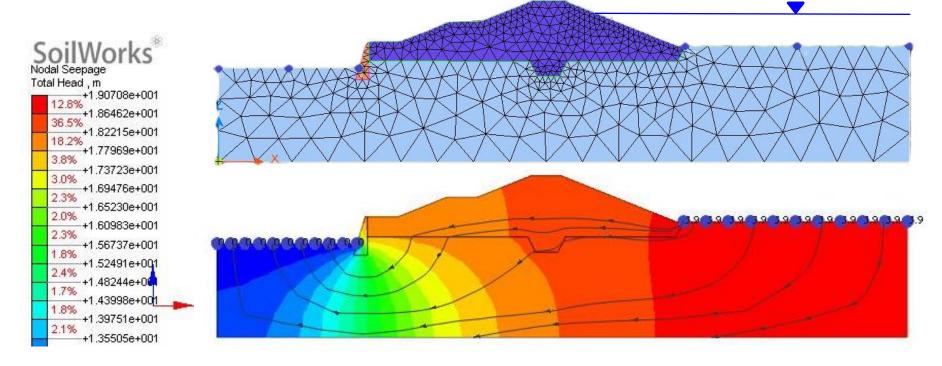

4


◆ 依水保手冊所需消能池所長度9.22m,設計長度10.4m

靜水池檢核		
入口寬度	6.0m	
入口臨界水深	0.66m	
需求長度	9.22cms	
設計長度	10.4cms,符合	

流末尾檻檢核		
設計溢口底寬	15.0m	
設計溢流水深	0.6m	
設計出水高	0.6m	
設計溢口高度	1.2m	
排洪需求量	12.42cms (含砂流流量)	
設計通洪量	13.80cms,符合	

壩體滲流安全評估


◆ 青灰泥岩具不透水性特性(滲透係數小),依Midas軟體滲流分析,下游滲流量僅 7.4×10⁻¹⁰ m³/sec,不影響壩體

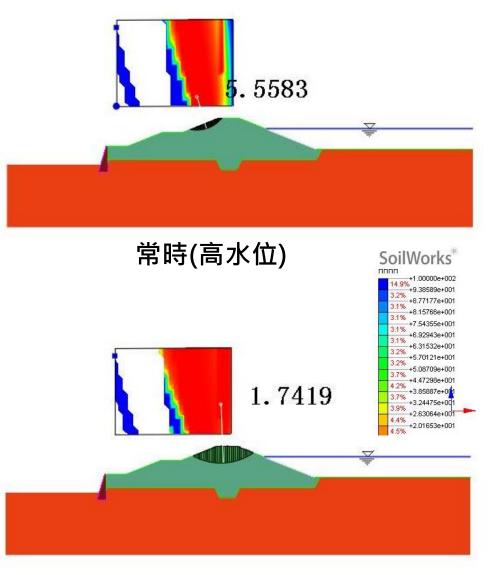
參數設定 (滲流係數)

壩體	$K_{(v.h)} = 5.00 \times 10^{-}$
壩基	$K_{(v.h)} = 1.70 \times 10^{-}$
鋼筋混凝土	$K_{(v.h)} = 1.00 \times 10^{-}$

依台灣大學 地質材料之 學實驗室一 台灣西南南 泥火山物質 及泥岩力學 行為

壩體安定分析評估

239

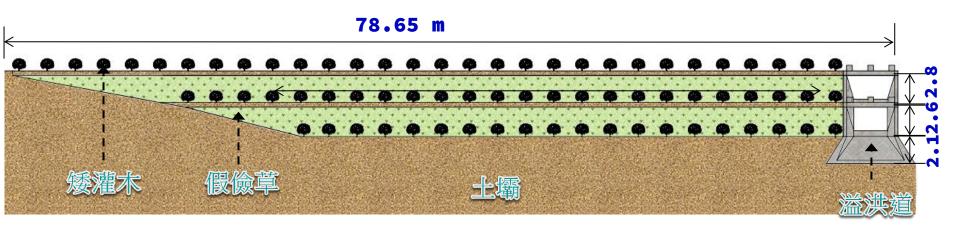

◆ 利用Midas軟體,採極限平 衡法LEM進行壩體安定分析

常時(高水位): F.S.=5.56,

地震(高水位): F.S.=1.74,

◆ 皆符合安全係數最小要求

安定分析成果		
項目	常時 (高水位)	地震 (高水位)
分析結果	5.56	1.74
安全係數 最小要求	1.50	1.10
檢核	✓	~



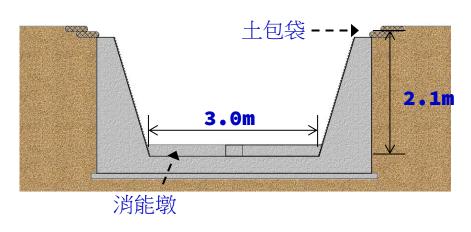
地震(高水位)

土壩

30

◆ 壩體總長78.65m,壩底寬40.5m,壩高7.5m



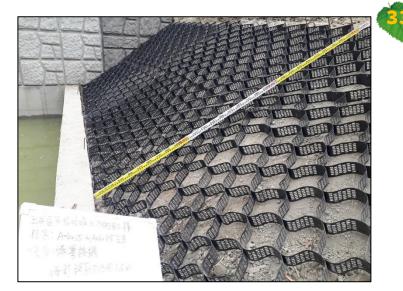


溢洪道

3

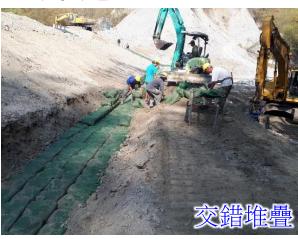
- ◆ 前期排洪,後期流路
- ◆ 設置防災通道供維管搶險使用

消能池、靜水池


- ◆ 消能池底混凝土封底,承受溢洪道水流衝擊
- ◆ 打設現地竹材提高土壤密實度
- ◆ 兩側設動物通道

蜂巢格網

- ◆ 穩定表土防止表面沖刷
- ◆ 供植物生長之穩定基盤



土包袋溝

34

◆ 截取坡面逕流,匯入渠道

植栽工程

◆ 適地物種,加速植生復育

肆、工程品質三級管理

品質管理

3

主管機關品管執行情形

●主辦單位不定時辦理品質督導12次。

監造單位品管執行情形

●監造技師定期督導**7**次,所列缺失,均列 管追蹤,並依限改善完成後備查。

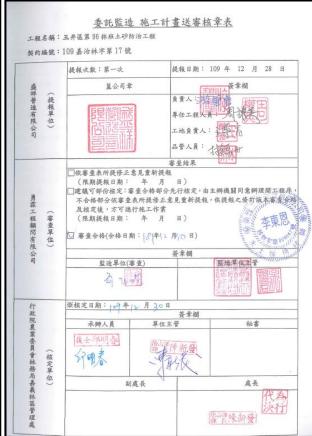
施工廠商品管執行情形

●專任工程人員定期督察**8**次,督察按圖施工,解決現地施工技術問題。

進度管制

- ◆ 配合旱季施工、人員機具調配充足,汛期前發揮效益
- ◆ 如期如質零工安

▼ ハfiンバハチタ マエス						旦台	益乙	3	H_h	七二		<u>}</u>									
工程名稱							提前至3月底完成 由并通第20林班上列 防治工程 < 施工進度表 >														
	日曆天 工程項目			10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
	上柱垻日	金額	百分比																		
1	土方工作,挖方	478,600	7.26%																		
2	土方工作,挖方(取土區挖方)	479,906	7.28%																		
3	土方工作,回填方	34,734	0.53%																		
4	基礎及土壩填築,回填夯實	779,541	11.82%				l														
5	結構用混凝土,預拌,210kgf/cm2,含澆置及搗實	1,358,400	20.59%						1												
6	普通模板	506,700	7.68%																		
7	造型模板	143,820	2.18%																		
8	鋼筋,連工帶料	639,156	9.69%																		
9	生態護坡,土包袋	357,500	5.42%																		
10	生態護坡,植草	192,500	實際	欠剂	主用																
11	生態護坡,稻草蓆敷蓋	87,500	見36	示理	以又				名	已進	田田										
12	植栽(業主提供苗木)	20,000	0.30%						1 N												
13	生態護坡,蜂巢格網	83,420	1.26%																		
14	竹椿打設	30,450	0.46%																		
15	現地拌合1:9	5,720	0.09%																		
16	混凝土澆置全程錄影費	26,000	0.39%																		
17	施工便道打設與維護費	64,450	0.98%				/														
18	臨時擋土措施	25,000	0.38%		/																
19	零星工項	23,945	0.36%																		
20	內業與施工測量	50,200	0.76%																		
21	臨時水保與施工防災設施	26,000	0.39%																		
22	大型機具公路運費	34,000	0.52%		ļ																
23	材料試驗與施工檢驗費	180,000	2.73%																		
24	施工品質管理費	86,713	16.39%																		
26	環保安衛費	67,371	1.02%																		
27	廠商利潤、管理費與保險費	500,279	7.58%																		
28	營業稅(一至五*5%)	314,095	4.76%		l				l -		l	1									
	總金額	6,596,000	100.00%																		
				6.21%	35.70%	75.76%	87.26%	88.55%	96.22%	99.79%	99.79%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
								_								_					


計劃書核定情形

類型	提送日期	審查日期	核定日期
監造計畫	109.12.24	109.12.25	109.12.25
施工計畫	109.12.28	109.12.30	109.12.30
品質計畫	109.12.28	109.12.30	109.12.30

材料取樣試驗統計

抽查項目	單位	契約規定 試驗次數	試驗 次數	合格 次數	不合格 次數	
鋼筋	支	4	4	4	Θ	100
氯離子含量	次	6	6	6	Θ	
混凝土抗壓	組	6	6	6	Θ	%
工地密度	組	32	32	32	Θ	全數
混凝土穿透	次	1	1	1	Θ	_L, &A
累計		49	49	49	Θ	合格

施工查驗統計表

◆ 抽查12項目,共計191次

合格率98。4% 缺失改善完成

	抽查項目	應抽查 次數	已抽查 次數	符合 次數	未符合 次 數	備註
1	放樣工程	34	34	34	0	
2	開挖工程	7	7	7	0	
3	回填工程	32	32	32	0	
4	鋼筋工程	10	10	10	0	
5	模板工程	20	20	20	0	
6	混凝土工程	20	20	19	1	混凝土完成面漏漿
7	土包袋溝工程	2	2	2	0	
8	生態友善措施	2	2	2	0	
9	職業安全衛生	16	16	14	1	未安裝警告標誌
10	環境保護	16	16	16	1	油桶未墊高及無防油布
11	臨時防災設施	16	16	16	0	
12	安全警告設施	16	16	16	0	
		191	191	188	3	

自主檢查統計表

◆ 抽查12項工程,共計373次

	合格率99。4%	•
\geq	缺失改善完成	_

				<u> </u>
抽查項目	檢查 次數	合格 次數	▼不合格 次數	備註
放樣工程	34	34	Θ	
開挖工程	28	28	Θ	
回填工程	32	32	Θ	
鋼筋工程	20	20	Θ	
模板工程	22	22	Θ	
混凝土工程	40	40	Θ	
土包袋溝工程	2	2	0	
生態友善措施	3	3	Θ	
一般安全衛生	64	63	1	材料堆置凌亂
施工作業安全衛生	64	63	1	挖土機未裝設 蜂鳴器
環境保護抽查表	64	64	Θ	
累計	373	371	2	

土壩夯實作業

- **▶** 確實放樣控制高程
- 每30cm分層夯實
- 逐層進行工地密度試驗,需達90%以上
- 32組試驗均合格,平均壓實度為92.43%

均曜檢驗科技有限公司 均曜工程材料實驗室 Jun Yao Testing Technology Co., Ltd. Jun Yao Engineering Materials Laboratory

夯實土壤求土壤含水量與密度關係試驗報告 工程名稱: 五井區第96林班土砂防治工程 超去编辑: 2103056 案 主: 林務局嘉義林營處 頁 次:第1頁共1頁 監造單位: 勇霖工程額問有限公司 承 句 南; 盛祥整治有限公司 委託單位: 林務局嘉義林營處、專業工程顧問有限公司、蟲科營造有限公司 試驗時間: 01/20 16:33 - 01/27 10 聯結資訊: 嘉義市林森西路一號、台南市東區仁和路 219號、台南市楠西區龜丹里39-4號 取樣人員: 嘉義林管處-邓明春;監造-林宗賢;盛祥營造-王榮富 會驗人員: 试验方法: A法 取樣位置: 土壩 夯打方法: 手工夯打 試驗次數 含水量(%) 9.6 13.6 7.8 11.7 15.6 数土單位重(kg/m3) 1950 1969 1975 1975 kg/m³ 最佳含水量 11.3 (%) 含水量(%) 備註: 1.本實驗室為公共工程材料實驗室認證服務計畫認可實驗室 2. 依據規範: 改良式 CNS11777-1(2005)

3. 粒料停留於各篩百分比(%)

均曜檢驗科技有限公司 均曜工程材料實驗室 Jun Yao Testing Technology Co., Ltd. Jun Yao Engineering Materials Laboratory

相放斜羽水垄

實驗室地址:台南市水康區聖龍街242號 工地密度試驗報告 工程名稱: 五井區第96林班土矽防治工程 超华华龄: 2103814 政件時間: 2021/01/25 11:00 承 包 前: 盛祥巷造有限公司 委託單位: 林檎两套表林管底、舞霖工程板同有限公司、蟲科管造有限公司 (抗險時間: 01/25 10:30 - 01/27 10: 聯絡資訊: 嘉義市林森西路一號、台南市東區仁和路 219號、台南市橋西區龜丹里39-4號 取樣人員: 嘉義林管處-禁忘軒;監造-廖佳均;盛祥營造-林嘉賢 近(會)輸入員: 各長科学表-第名於(11231101): 原北-第位功(11231101): 長杯學也-林各聚(11231100) 就樣名稱: 土壤-灰色。 取樣位置: 土壩第12組

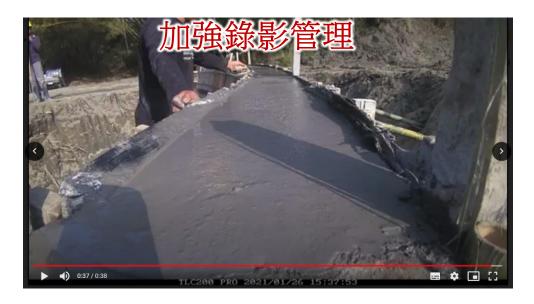
試驗孔洞 最大維經	試驗孔洞 盤積	租料 百分比	工地 整體試樣 含水量	調整後 最佳 含水量	轮密度	調整後之 最大執密度	壓實度	规範值
	(cm ³)	(%)	(%)	(%)	(kg/n^3)	(kg/n ²)	(%)	(%)
(No. 4)	890	-	9.2	-	1820	1980	92	90
(No. 4)	821	-	8.9	3-3	. 1890	1980	95	90
<4.75nn (No.4)	987	-	8.8	7-7	1840	1980	93	90
		*****	以下空台	ı—				
	最大粒径 (4.75mm (No.4) (4.75mm (No.4) (4.75mm	武験孔洞 最大教程 (cm ³) (4.75m 890 (4.75m 821 (4.75m 097	試験孔洞 最大粒程	契級孔詞 試験孔列 銀件 最大無整 盤積 百分比 含水量 (cm²) (劣) (劣) (5), 44. 75m (8), 49. 75m	試験孔河 NSWれ河 成件 優先 整璧試析 高分	試験孔列 送供売列 批析 対策 数位 数位 数位 数位 数位 数位 数位 数	経験上元 日本 大田 大田 大田 大田 大田 大田 大田 大	経験に周 24年 184 1

1. 本實驗室為公共工程材料實驗室認證服務計畫認可實驗室。 2. 依據規範: CNS 14732 (2005) & CNS 14733 (2005)

出具單位: 均曜檢驗科技有限公司均曜工程材料實驗室

- 銀可編號: 2880 報告日期: 2021/01/27 4. 試緣和斜百分比低於5%,則不進行調整工作。

5. 調整密度方法:以調整實驗室最大航網度方式計算(方法一)


5. 國質度計算公式:工地整體之稅密度/調整後之最大稅密度 7. 本報告若有提供規範值時,該規範僅僅供參考,合格之則定以委託單位實際要求為生

8. 本報告報題字部分實驗宣依顧客提供之資訊營載;本報告結果除非另有說明否則僅對送驗樣品 負責,另未經書面許可,不可部分複製;測試場地:於工程名稱之取樣位置(地路)測試孔測體

施工錄影作業

- ◆ 澆置前檢查錄影機與角度
- ◆ 澆置中隨時檢查妥善度
- ◆ 澆置後定期提送影片,至 監造單位查驗彙報機關
- ◆ 影片經監造查驗無遺漏

玉井區第 96 林班土砂防治工程↔ 混凝土湊置錄影查驗照片↔

落實生態自主檢查

玉并區第96 林班土砂防治工程

C01 生態友善機制自主檢查表

表號: 01 检查日期: 2021/01/30

施工進度: 77.19% 預定完工日期:2021/07/06

項	項			執行	结果		
目	次	檢查項目"		執行但 不足	未執行	非執行 期間	執行狀況陳述
	1.	溪流旁可見溪蟹洞穴,施工便道請勿由工 區的南方沿溪床追入,避免機具進出干擾。	٧				
	2.	蜂巢格網具通透性,有利於植生回復,並 於完工後灑牆草籽加速復育。				~	完工後請提供草 仔種類(單位面積 重量):
	3.	土壩緩坡化(1:2.5),維持動物通行。	V				
主態	4.	土壩、土石籠材料的採土,從取土區採土, 完工後於取土區鋪設稻草幫、灑猪草籽, 加速植被回復。				~	完工後請提供草 仔種類(單位面積 重量):
支系計	5.	完工後於土壩採露坡面上,種植草皮(假 儉草)與苗木(陽性原生植物)。				v	完工後請提供苗 木(數量):
ŧ	6.	表土保存,收集工區植被種源為五節芒與 剌竹林的地區,表層土壤深度約30公分, 暫置時需覆蓋不透明帆布避免被雨水沖 刷,完工後平均鎖上收集之表土。	٧				完工後請提供瀏播位置
	7.	利用廢竹枝鯛東,於靜水池旁排成斜坡, 營造緩坡,廢竹枝腐爛後可形成自然基 質,最後形成草坡。				v	
	8.	汛期區隔溪水與施作區域以維持溪水濁度 穩定。				V	

借註: 表格內標示底色的檢查項目請附上照片,以記錄執行款況及工區生態環境變化

施工廠商

單位職稱:盛祥營造有限公司

監造單位

是位 政称: 勇敢 一声说话

姓名(簽章):_

可能

皆於每月月初提送 生態專業團隊審核

生態友善機制施工階段照片及說明

1. 溪流旁可見溪蟹洞穴, 施工便道請勿由工區的南方沿溪床進入, 避免機具進出干擾。

[施工階段]請拍攝施工便道位置

[施工階段、完工]

日期:109.12.31

說明:施工便道請勿由工區的南方沿溪

床進入,避免機具進出干擾

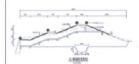
日期:110.01.15

說明: 施工便道請勿由工區的南方沿溪

床進入,避免機具進出干擾

2. 蜂巢格網具通透性,有利於植生回復,並於完工後灑播草籽加速復育。

[施工階段]


[完工後]

日期:110.03.03

說明:蜂巢格網具通遠性,有利於植生

回復,並於完工後灑播草籽加速復育。 3.土壩緩坡化(1:2.5),維持動物通行。 日期:

[施工前]

[施工階段]

日期:110.01.19

說明:土壩緩坡化(1:2.5),維持動物通行

日期:110.01.31

說明:土壩緩坡化(1:2.5),維持動物通行

4. 土壩、土石籠材料的採土,從取土區採土,完工後於取土區鋪設稻草蓆、灑播草籽,

加速植被回復。

[施工前] 輔以照片佐證,如種子袋、撒播工

作照

[施工階段]

日期:110.03.02

說明:從取土區採土,完工後於取土區 銷設稻草蓆、灑播草新,加速植被回復。 日期: 110.03.04

說明:從取土區採土,完工後於取土區 銷設稻草蓆、灑播草籽,加速植被回復。

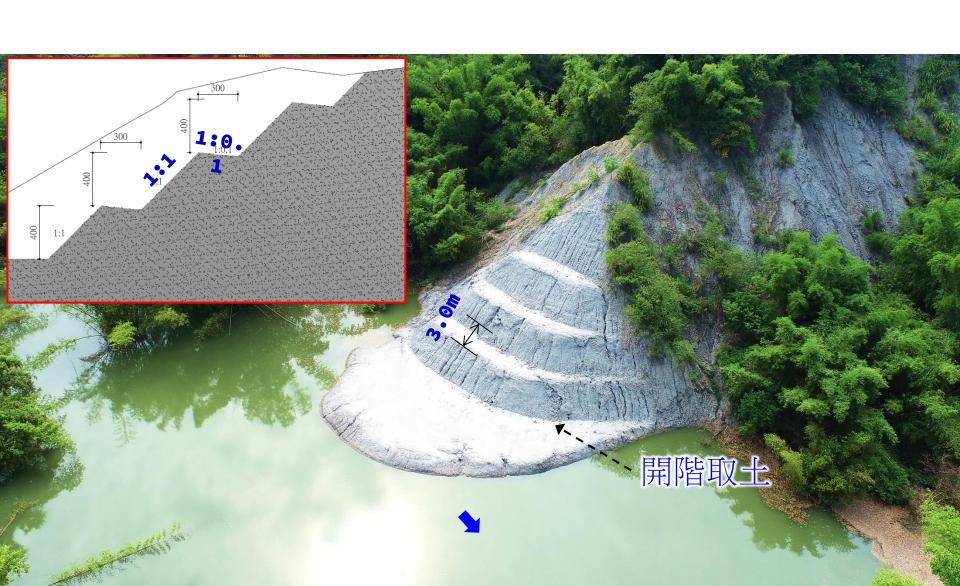
伍、 工程特色及效益

BIM模型建置

- ◆ 利用3D模擬,建置完工願景、效益
- ◆ 檢討工序與介面整合

就地青灰岩填築

- ◆ 採分階取土,作為填築材料
- ◆100%土砂「取用平衡」,友善環境落實節能減碳



取土區開階整坡

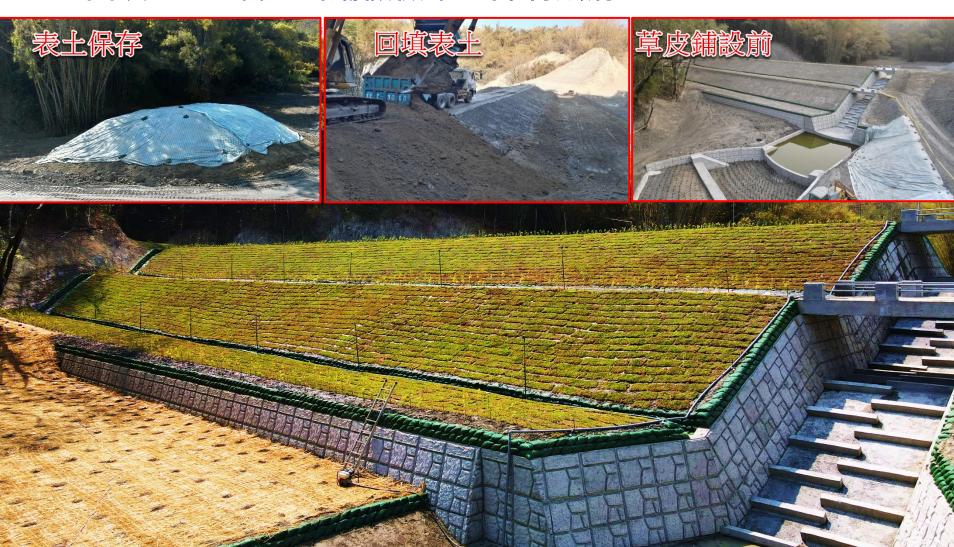
49

◆ 分層、內斜、截流,使逕流變緩降低坡面沖刷

壩翼、溢洪道剪力榫皆崁入岩盤

竹樁就地取材

- ◆ 取用上游淹沒區及壩體區之竹材
- ◆ 提高土壤密實度,減緩靜水池土壤流失兼具緩流作用


1:9水泥土壤拌合

- ◆ 加強固結減少流失變形
- ◆ 土包袋溝不易損壞,亦不影響草種生長

坡面鋪設草皮抑制沖刷

- ◆ 青灰岩植生不易·坡面遇雨易形成蝕溝
- ◆ 回填30cm表土密鋪假儉草,抑制蝕溝

植栽復育與種植


- ◆壩頂、平台種植矮仙丹柔性區隔
- ◆ 土壩前補植原生種無患子及相思樹
- ◆ 植栽複層手法打造多樣性環境

防災通道

- ◆極端氣候成常態,森林火災頻傳
- ◆ 預留搶災取水及維管動線

維護管理:植栽養護

- ◆ 架設噴灌系統,汛期前植栽後養護作業
- ◆ 適當控制水量,草皮及灌木生長狀況良好

維護管理:跨領域合作

◆ 與生態團隊、當地民眾、里長,配合維管

危害樹種調查

生態團隊提供專業建議

壩體上山麻黃移除

溢洪道雜木清除

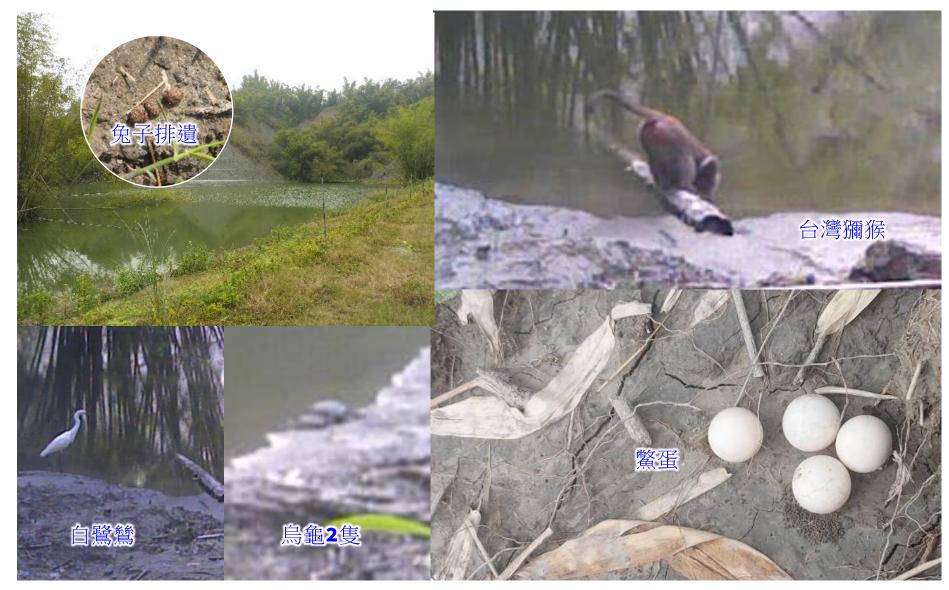
維護管理:壩體安全檢查

- 58
- ◆ 訂定維管巡檢機制,協請在地里長辦理,即時回傳檢查狀況
- ◆除每月定期巡檢,災後加強巡檢確認壩體狀況

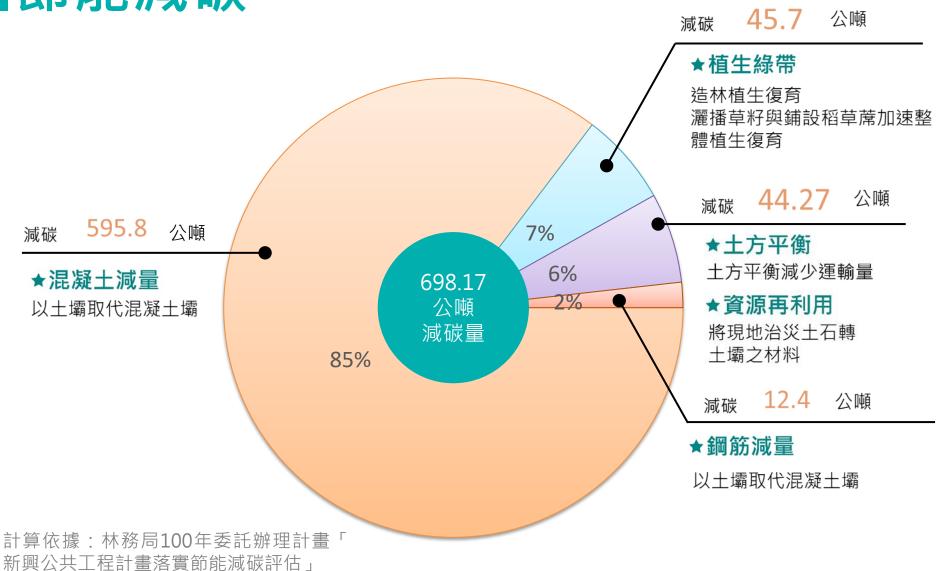
玉井區第96林班土砂	防治工程
土壩□巡檢表	
日期: 1/0 年 //	月 [Yu 天氣狀況(晴)陰/雨):
一、 壩體1. 上游坡面:	
□完整 □裂缝 □沉陷 □滑動 □沖蝕溝	□動物挖袖 □ 尚不生长
 下游坡面: □完整 □裂缝 □沉陷 □滑動 □沖蝕溝 	
	□動物挖袖 □ 尚不生长
□滲水 □滲流 □泥水	
3. 壩頂:	
□完整 □裂缝 □沉陷 □位移 □動物挖掘	攝 □ 尚不生長
二、溢洪道	
□完整 □製縫 □排水路暢通 □漂流物阻息	基
重要事項記敘:	1
現況照片:	
*巡檢完成應確實回傳至維護管理單位	巡檢人員: 星老科寺
	I .

一年 かい 2年7 万豆 ハハ・ブロ
玉井區第96林班土砂防治工程
土壩□巡檢表
日期://○年/ン月 >>> 日 天氣狀況(睛/陰/雨):
一、 壩體
1. 上游坡面:
☑完整 □裂縫 □沉陷 □滑動 □沖蝕溝 □動物挖掘 □喬木生長
2. 下游坡面:
□完整 □裂缝 □沉陷 □滑動 ☑沖蝕溝 □動物挖掘 □喬木生長
□渗水 □渗流 □泥水
3. 壩頂:
☑完整 □裂缝 □沉陷 □位移 □動物挖掘 □喬木生長
二、 溢洪道
□完整 □製鏈 □排水路畅通 □漂流物阻塞 重要事項記敘: > 00 = 15 = 16 > 14 = 15 = 15 = 15 = 15 = 15 = 15 = 15 =
現況照片:
巡檢人員: 3人學 彩 *巡檢完成應確實回傳至維護管理單位

生態保育策略



完工回復成果


60

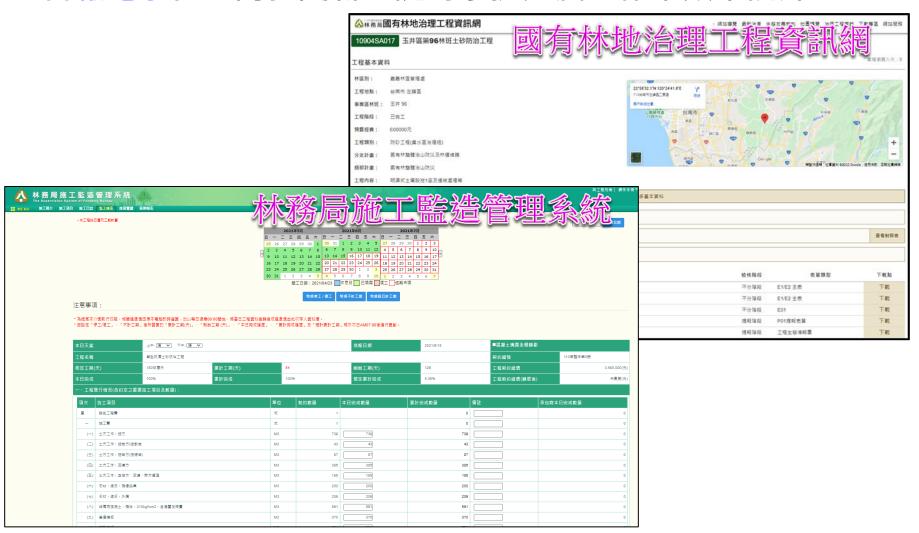
◆生物活動紀錄

節能減碳

1.8座大安森林公園年固碳量

完工後持續監測

62


- ◆ 縮時錄影監控
- ◆ 經多場大豪雨考驗仍完整無損壞

電子化作業提升效率


63

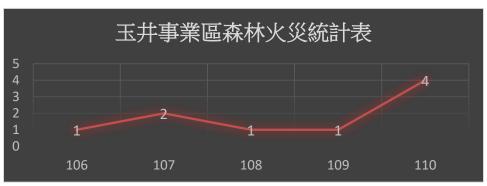
- ◆ 生態檢核歷程上網站公告,民眾可輕鬆檢視內容及參與
- ◆ 日報電子化,同步更新,隨時掌握進度,作業效率提升

工程督導

工程效益(1/7) ◆減緩土砂流失・保全 上游坡面

工程效益(2/7)

工程效益(3/7)


工程效益(4/7)

工程效益(5/7)

工程效益(7/7)

陸、結語

評審標準重點說明(1/5)

1			
評分 指標	評審標準	索引	重點說明(詳評選簡報或三級品管文件資料)
	1.主(代)辦機關 之品質督導(保證機制) 1.對專案管理、監造單位及承担 廠商之履約管理能力。 2.監造計畫之審查紀錄、缺失改 善追蹤落實度。	間 和 D27	1.主辦機關定期及不定期督導次數皆多於規定次數。2.監造計畫書業經審查,原則符合規定,並於開工前核定。3.施工計畫及品質計畫,於開工前核定完成。
	2. 專案管理廠 商之品質督導 (保證)機制 主题 (保證)機制 主题 (保證)機制 主题 (本述) (本述) (本述) (本述) (本述) (本述) (本述) (本述)	NI/A	本案無專案管理廠商。
品質 管理 (制度/ 施工)	1.監造單位之監造組織、監造記畫、施工計畫及品質計畫之審 書、施工計畫及品質計畫之審 查、材料設備抽驗及施工抽查 品質保證機制 、品質稽核、文件紀錄管理系 統等監造計畫執行情形。 2.缺失改善追蹤等之執行情形。	P37 P39 P40 P41	 本案依監造計畫及施工規範辦理相關計畫書審查、施工抽查、稽核,並落實文件管理,監造技師督導次數多於規定次數。 缺失改善亦紀錄於監造品管文件內,施工廠商皆於契約時限內完成改善,且無發生重複性錯誤。 材料設備抽驗49次、施工抽查191次,符合監造計畫檢驗停留點,並增加隨機抽查頻率,各項抽查、督導、查核缺失皆如期如質改善。
	1.承攬廠商之品管組織、品質言畫、施工要領、品質管理標準、材料及施工檢驗、自主檢查表、不合格品之管制、矯正與預防措施、內部品質稽核、文件紀錄管理系統等品質計畫執行情形。 2.安全衛生及環境保護措施等之數行情形等事項。	簡報 P40 P42 中42 中45	 1. 承攬廠商品管組織完整,依契約撰寫品質計畫,嚴密執行品質管制標準,有效提昇施工品質。 2. 材料取樣49次、自主施工檢查181次,落實自主檢查、矯正預防作為,缺失大幅減少,文件紀錄管理系統完整落實。 3. 職安衛檢查64次,重視職安危害教育訓練、職安措施、防減災作為。 4、承攬廠商依生態友善方案施工,並落實填寫生態友善機制自主檢查表,對環境保護作出貢獻。

評審標準重點說明(2/5)

-
AT AT A
1

評分 指標	評審標準	索引	重點說明
品耐性維管 30%	1.規劃設計對營運使用需求考量 之周延性。 規 2.細部設計成果對施工、材料及 劃 維護管理措施之完整性。 設 3.公眾使用空間針對使用者(性別 計 、高齡、幼齡、行動不便等)差 異於安全性、友善性或便利性考 量之周延性。	P12 P13 P47 P48 P50 P53	1. 設計階段針對各治理工法對環境、效益、治理成效進行綜合評估, 建議採新建土壩方式治理。並評估原址不利壩體穩定, 另擇定壩址提升工程效益, 未來淤砂量約1萬m3。 2. 設計階段即製作3D模型評估衝突點以優化界面設計,將後續施工單純化,並輔佐廠商優化工序,提升工進與品質。 3. 以就地取材減少材料外運用量,配合現場地形設置溢洪道,並剪力榫及兩側壩翼崁入岩盤,增加壩體穩定性。 4. 青灰岩植生不易,土壩坡面回填30cm表土並密鋪假儉草抑制蝕溝。壩頂及平台種植矮仙丹柔性區隔,並提升植栽多樣性。
	履約 2.工程施工管理之嚴謹度。 2.工程材料檢驗之完整性。 3.工程管理電子化作業運用度。	簡報 P37 P64 P43 P63	1. 主辦機關隨時進行不預警現場督導。 2. 本案施工期間林務局工程督導小組督導獲甲等84分肯定。 3. 本案主要施工項目為土壩夯實作業,確實放樣控制高程,每
	1.維護管理手冊之妥適性及周延性(專案評估公共工程之延壽、 更新、降級使用或變更用途之處理方案及其時機)。 2.提供技術移轉維護操作手冊及實務訓練課程,以利採購機關後續接管運用。 3.環境監測調查計畫或機關所訂之規定落實執行。	簡報 P55 P56 P57	 預留通道作為後續土壩維護管理動線。另因極端氣候成常態, 近年森林火災頻傳,亦可作為搶災取水通道。 架設噴灌系統,落實植栽養護作業。 邀集生態團隊、當地民眾、里長配合後續維護管理,藉由地方 民眾維護壩體安全,包含移除壩體上深根喬木、溢洪道雜木清 除等。 訂定維管巡檢機制,協請地方里長定期巡檢;如遇災害(颱風、 豪雨、地震等)將由工作站人員加強巡檢確認壩體狀況

評審標準重點說明(3/5)

評分 指標			索引	重點說明(詳評選簡報或三級品管文件資料)
進度 管理 10%	1.施工進度管控合理		簡報 P38	1.工區位於偏遠山區,機具人員出入困難,且該處為 泥岩地形,遇兩除難以進出外更無法進行土壩填築 作業,故工期編列實屬合理。 2.施工廠商另尋舊有農路,打設施工便道,降低出入 工區難度;設計單位以BIM模型與施工廠商優化工 序,並且人員機具調配充足,於旱季加快施工,提 早完工於汛期前發揮效益。
	2.施工進度落後因應		簡報 P38	1.本工程進度未出現落後狀況,除如期如質外,更提早完工。
節能減碳	1.周延性		簡報 D16、	1.主支流以一座弧形潛壩取代兩座傳統潛壩,界面整合後降低施工風險、工程經費並更加妥善控制匯流;工程內留設清疏便道並規劃重機械下車區,以利未來清淤維護管理工作。 2.配合工程會政策,延壽既有固床工,並賦予新使命,與本案橋涵座槽共構,發揮最大效益;篩選現地致災塊石轉換為工程建材,降低經費、節能減碳並降低清疏堆積區量體。
15%	2.有效性		簡報 P61	1. 以現地青灰岩填築土壩取代混凝土防砂壩,減少混凝土用量、現地土方平衡不外運、造林植栽復育等,依據林務局100年委託辦理計畫「新興公共工程計畫落實節能減碳評估」之減碳量計算,共減少698.17噸碳排放量。

評審標準重點說明(4/5)

評分 指標	▎			重點說明(詳評選簡報或三級品管文件資料)
與安	1.工地安全 衛生	工地環境衛生整潔、安全措施(安全圍籬、安全護欄、安全警示標誌、交通管制等項目之落實度。	P42	1.落實工地職安作業,填具環保自主檢查表共64份,達成零災害、零事故的目標。 2.每日收工前必加強工地環境衛生整潔、安全措施。
全10%	2.工地災害 預防	意外災害之預防及緊急應變計畫之 周延性。	P42	1.每日落實施工前危害告知SOP,降低意外災害發生。 2.擬定施工緊急應變計畫,周延施工規畫,達成零災害、零事故之目標。 3. 每日填具安衛自主檢查表共64份,並定期辦理勞安教育訓練。
環境 保育 15%	1.環境維護	噪音、光線、溫度、空氣維護管理 之周延性。	P48 P35 P53	
	2 生能保育	1.工程規劃階段考慮降低對生態系統之衝擊。2.施工階段考慮對生態系統干擾。3.維護階段衡量維護時機、強度、方法、材料、範圍對動植物之影響及對生態之干擾。	P20 P21 P22 P23 P59 P60	3. 依生態調查結果納入設計考量,壩體緩坡化、設置動物通道、縮減干擾動物範圍,施工後亦補植喬木、灌

評審標準重點說明(5/5)

評分	+T = 1.44 N+	+71	エ ゕレ・ハヮヮ
指標	評審標準	索引	重點說明
	工程於施工及材料 運用新工法及新材 料等創新挑戰情形 1.創新 挑戰 性	P33 P48 P51 P52	 現地皆為泥岩植生不易生長且遇雨易淋溶,護岸上方設置蜂槽格網,穩定表土防止沖刷,提供植物生長之穩定基盤 土壩材料就地取材,利用現地青灰岩不透水性特性填築滾壓,確保土壩之功能及安全。 利用上游淹沒區及壩體座落區之竹材,就地取材再利用打設於靜水池提高土壤密實度,兼具緩流作用減緩靜水池土壤流失。 一般土包袋填充土壤易因雨水軟化,填充土流失導致土包袋塌陷影響其功能。故本工程土包袋溝採1:9水泥拌合土壤加強填充土結固性,減少流失變形,且不影響草種生長。
創新科技 10%	1.工程於施工及材料運用等科技 新材料等。 2.BIM(Building Information Modeling) 技術 協助營建生理的 協助營建管理系統 工程作業之與所 概念之運用情形。	P26 P28 P29 P47 P60 P62	 本案以曼寧公式進行檢核外,因溢洪道設置消能敦難以檢核,故另以hec-ras分析,藉流線、流速變化作為整體溢洪道設計依據 考量土壩滲流及安定分析計算較為複雜,因此導入Midas進行滲流分析,並以極限平衡法檢核安定分析,工程設計更加完善。 設計階段確立方向後,除利用AUTOCAD工程製圖,考量改善前後差異大且各構件多為弧形,故以BIM技術建立3D模型,檢討完工願景及效益;施工階段亦利用模型與承包商討論工序安排及界面銜接,降低承包商出錯機率並有效提升工進,如期如質並提前完工。 施工過程利用縮時攝影、通訊軟體掌握工區動態,豪雨期間立即回傳工地照片以利主辦機關做緊急應變措施。完工後亦持續監控豪雨情形及生態回復成果。 施工過程不定期以UAV航拍評估周邊干擾情形,亦掌握周邊植生、邊坡動態,以利滾動式檢討工序安排。

