利用數位土壤繪圖預測濁水溪流域土壤有機碳儲量

楊博鈞¹ 楊心如¹ 劉滄棽² 張翊庭³ 許健輝^{3,*}

摘要

楊博鈞、楊心如、劉滄棽、張翊庭、許健輝。2024。利用數位土壤繪圖預測濁水溪流域土 壤有機碳儲量。台灣農業研究 73(2):135–151。

土壤碳庫為全球僅次於海洋的第二大自然碳庫,土壤碳固存 (carbon sequestration) 被認為在氣候變遷的 調適與減緩過程,扮演著重要角色。同時,土壤有機碳 (soil organic carbon; SOC) 對於土壤物理、化學及生 物特性具有正面的影響。因此,發展準確的繪圖技術對於預估區域尺度土壤有機碳儲量 (SOC stocks) 與量化 土壤的功能是非常重要的。本研究目的為應用數位土壤繪圖 (digital soil mapping) 估算濁水溪流域表土 (0-30 cm) 與底土 (30-50 cm) 土壤有機碳儲量與繪製其空間分布預測圖及進行不確定分析,並且比較不同地形與土 地覆蓋之土壤碳儲量差異。結果顯示, Regression Kriging (搭配 Cubist) 有最佳預測效果 (表土: *R*² = 0.46; 底 土:*R*² = 0.48),其中土綱、高程及年均溫為表土與底土有機碳預測的重要環境參數。不確定度分析結果指出, 因森林地區土壤調查樣點較少,導致模型預測範圍 (prediction range) 較大。不同土地覆蓋分類 (森林、水田、 旱田、果園及其他) 結果發現,高山地區森林的表層土壤有機碳儲量最高 (11.2 kg m²),底土則是土地覆蓋類 型間差異不明顯。根據預測結果指出,濁水溪流域內表土與底土的有機碳儲量約分為 28.22 與 15.14 百萬噸 (Tg)。本研究之結果可作為濁水溪流域土壤碳匯估算、生態系服務價值評估及碳農業 (carbon-farming) 規劃研 究之參考依據。

關鍵詞:土壤有機碳儲量、數位土壤繪圖、濁水溪流域、機器學習。

前言

土壤有機碳 (soil organic carbon; SOC) 為 全球碳循環的重要儲存庫 (Grace 2004),會影 響土壤肥力、化學及物理特性;其含量的微小 變化也會顯著改變大氣中的碳濃度,對於局部 或全球的碳循環具有很大的影響 (Johnston *et al.* 2004)。隨著大氣中二氧化碳濃度上升,農 地土壤對於碳固存 (carbon sequestration)的潛 力更受到重視 (Singh *et al.* 2018)。在土壤有 機碳的變化與量化,已有許多不同空間尺度與 目的之研究成果, Viaud *et al.* (2010) 指出在 景觀尺度 (landscape-scale) 下能夠同時考慮自 然過程、人為操作及 SOC 動態變化的交互作 用。因此,在該尺度下評估環境與農業生態系 統的土壤有機碳變化較佳。

在評估土壤特性的空間分布方面,可以使 用繪圖或建立預測模式的方法,建立預測模式 屬於使用數學方程式模擬與預測真實的事件與 過程,而繪圖則強調製作地圖或在地圖上進 行描繪。數位土壤繪圖 (digital soil mapping; DSM) 是根據土壤觀測資料搭配與其相關的環 境因子,透過不同統計方法或演算法建立的數 值模型,進而預測未採樣區域土壤屬性的系統 (Grunwald 2009)。在繪製土壤特性的圖資時, 需先建立目標區域內高密度的觀測數據 (Scull et al. 2003),但在大規模的評估尺度下,由於 時間與人力成本的限制,難以取得大量的數

投稿日期:2023年12月1日;接受日期:2024年3月12日。

^{*} 通訊作者: chsyu@tari.gov.tw

¹農業部農業試驗所農業化學組計畫助理。臺灣臺中市。

² 農業部農業試驗所農業化學組研究員兼組長。臺灣臺中市。

³ 農業部農業試驗所農業化學組副研究員。臺灣 臺中市。

據。因此,通常透過模型模擬的方式將分散點 位數據繪製成土壤特性圖,在模擬過程中, 土壤特性的空間變化為模型建構的要點 (Zhu & Lin 2010)。根據過去研究,有2種不同型 式的通用模型,用於解決空間變化與預測未採 樣點的土壤特性:(1) 非地理統計技術,基於 Jenny (1980) 與 McBratney et al. (2003) 所提 出的 SCORPAN 模型, 該模型旨在描述土壤形 成過程之土壤特性與環境特性之間的關係,目 的在於從詳盡的環境參數預測目標土壤特性, 例如多元線性迴歸 (multiple linear regression; MLR) 與廣義加性模型 (generalized additive model; GAM), 隨著機器學習方法的發展, 分 類與迴歸樹 (classification and regression tree; CART) 也被應用於 DSM 上,其中以特徵分類 的 Cubist Model (Quinlan 1992) 與集成學習方 法 Random Forest (Breiman 2001) 為廣泛被使 用的機器學習法;(2) 地理統計技術,即地理 或純空間方法,明確考慮土壤特性在觀測點間 的空間相關性,使土壤特性可以透過在土壤觀 測位置之間插值,從空間位置進行預測,例如 普通克利金法 (ordinary kriging; OK)、簡單克 利金法 (simple kriging; SK) 以及通用克利金 法 (universal kriging; UK) 等。此外, 隨著相 關研究的發展,亦有結合前述兩種方法的空間 分析方法,該方法以非地理統計方法預測土壤 特性, 並以地理統計預測殘差的空間變異性, 對於土壤特性的預測能夠達到更佳的表現,常 見的方法為迴歸克利金法 (regression kriging; RK) (Keskin & Grunwald 2018)。在土壤特性 的預測與繪製上,不同方法的預測表現會受 到許多因素控制,例如空間尺度 (Poggio et al. 2010)、觀測點密度 (Tsui et al. 2016; Keskin & Grunwald 2018) 或是地形 (Zhu & Lin 2010) 等。

Lamichhane et al. (2019) 指出,土壤有機 碳的空間預測模型包含多元線性迴歸、決策與 迴歸樹、隨機森林 (random forest; RF)、神經 網絡 (neural networks; NN) 以及迴歸克利金 等。多元線性迴歸在前期為預測 SOC 的主要 技術,如 Meersmans et al. (2008) 利用多元線 性迴歸模型評估不同土地利用下 SOC 與土壤 質地及地下水位間的關係;隨著 DSM 技術發 展, RF 模型對於 SOC 的估算具有較佳的預測 表現, Siewert (2018) 應用該模型於瑞典北部 泥炭地 SOC 預測; Yang et al. (2016) 於青藏高 原東北部的預測結果則顯示 RF 與提升決策樹 (boosted regression tree; BRT) 模型對於 SOC 空間分布皆有好的預測表現; Akpa et al. (2016) 則顯示在使用奈及利亞歷史數據預測 SOC 時, RF 的預測表現優於 BRT, 並指出 RF 模型在高 山生熊系統中更能有效處理 SOC 與環境共變 數間的非線性關係。除 MLR 與 RF 外, Cubist 模型亦為近年來常被使用於預測 SOC 的機器 學習法之一,例如 Gray & Bishop (2016) 利用 Cubist 模型預測新南威爾士州在不同氣候模型 下的 SOC 潛在變化,並比較氣候-母質-土地 利用對於 SOC 的長期影響; Rudiyanto et al. (2018) 則運用該模型有效預測印尼廖內省泥炭 地的厚度,估算研究區域內的有機碳儲量。近 年來,迴歸克利金法則被認為是繪製土壤特性 空間分布的重要方法之一 (Keskin & Grunwald 2018),在此類混合模型中,模型用於評估目 標變量與共變數間的確定性趨勢,而殘差則以 克利金法進行分析;許多研究指出結合克利金 的結果能夠對於模型預測結果進行優化,如 RF 模型 (Guo et al. 2015) 與 Cubist 模型 (Dorji et al. 2014; Ma et al. 2017)。然而, Vaysse & Lagacherie (2015) 於法國的研究中則指出加入 克利金並不會提高 RF 模型的表現,而 Lamichhane et al. (2019) 則提出沒有能夠應用於所 有地區的預測模型,由於採樣密度與共變數使 用皆會影響預測能力,故建議需運用統合分析 (meta-analysis) 評估最具優勢的演算法。

過去以土壤分類估算臺灣耕地土壤深度 0-30 cm 與 0-100 cm 的有機碳儲量為 38.5 與 77.0 百萬噸 (Tg) (Jien et al. 2010),森林土壤 中則為 114 與 160 Tg (Tsai et al. 2010)。Tsui et al. (2013) 指出,臺灣耕地土壤從北向南由 於溫度上升,平均 SOC 隨之降低,而森林土 壤有機碳儲量受溫度與高程 (elevation) 變化影 響,呈現高度相關。濁水溪位於臺灣中部,流 域涵括彰化縣、南投縣、雲林縣及嘉義縣,為 中部地區重要的農業生產區。流域內土壤有機 碳含量不僅作為重要土壤品質指標,該指標也 隨環境議題而日漸受到重視。因此,本研究的 目的為利用數位土壤繪圖技術估算濁水溪流域 土壤 (0-30 cm 與 30-50 cm) 有機碳儲量並繪 製該空間分布圖,並比較該流域範圍內不同土 地覆蓋條件下土壤有機碳儲量之差異。

材料與方法

研究區域

濁水溪流域位於臺灣中部,流域範圍涵括 彰化縣、南投縣、雲林縣及嘉義縣部分區域, 以東經 120°13' 35.63" E 至 121°19' 45.9" E, 北緯 23°28' 1.71" N 至 24°8' 20.94" N 為界,流 域面積約為3,156.9 km²,海拔範圍由0-3,844 m (圖1A),地形變化大,為呈現不同地形之土 壤有機碳儲量差異,本研究以海拔作為分類的 依據,區分種類包括高山(海拔大於1.000 m 之範圍, 2,060.7 km², 65.2%)、坡地 (海拔介 於100-1,000 m 之範圍,843.3 km²,26.6%) 及 平原(海拔小於100 m之範圍,261.7 km², 8.2%);2011-2020年平均溫度為8.61-23.6℃(圖 1B)、年累積雨量為855-3.693 mm (圖1C), 屬亞熱帶氣候;土壤特性方面,研究區上游以 石質土為主,西部平原地區則以粘板沖積土為 主。根據2015年土地覆蓋調查,流域上游多 為森林 (forest),下游缓坡與平原地區則多為 水田 (paddy)、旱作 (upland) 及果園 (orchard) 為主 (圖 1D)。

土壤樣品與土壤分析

本研究使用農業部農業試驗所(簡稱農試 所)土壤資源調查計畫(2008-2020年)於濁 水溪流域範圍內之調查數據,表土(0-30 cm) 共759個、底土(30-50 cm)共479個,使用 手持全球定位系統設備(Garmin GPS Map 64 st, Garmin Corporation, Olathe, KS, USA)記 錄樣品位置。土壤樣品於室溫下風乾,以35 目(mesh)篩網過篩並儲存於塑膠罐備用,而 後以失重法(Nelson & Sommers 1983)分析土 壤有機碳含量,並以土塊法或土環法測定總 體密度(Blake & Hartge 1986),利用式(1)將 有機碳含量與總體密度計算表土有機碳儲存量 (SOC_{stock})。一般而言,土壤中的含石量也是 影響土壤有機碳儲量需要考量的重要參數,然 而,考量取得總體密度數據(含石量高之樣點 無法採集土塊與土環樣本)與含石量觀測變異 較大,本研究選擇含石量為零之數據進行有機 碳儲量計算。

$$SOC_{stock} = TOC \times \rho \times D/10$$
 (1)

其中 SOC_{stock} 為土壤有機碳儲存量 (kg m⁻²), TOC 為有機碳含量 (%), ρ 為土壤總體密度 (g cm⁻³), D 為深度 (cm)。

環境共變數

本研究所使用的環境共變數可依資料類型 與成土因子 (soil formation factor) 進行分類, 包含數值高程模型 (digital elevation model; DEM)、衛星遙測影像、氣象、土地利用調查 以及土綱 (soil order) 分布等空間分布資料 (表 1),所有環境共變數皆以 R 4.0.5 重新取樣至 20 m 的空間解析度。

數值高程模型 (DEM) 取自內政部 20 m 網格資料,應用該資料結合 SagaGIS 8.0.1 產 製相關地形屬性,包括坡度 (slope)、坡向 (aspect)、地形崎嶇指數 (terrain ruggedness index; TRI)、地形位置指數 (terrain position index; TPI)、地形加度指數 (topographic wetness index; TWI)、多解析度谷底平坦度指數 (multiresolution index of valley bottom flatness; MrVBF)、多解析度脊頂平坦度指數 (multiresolution ridge top flatness; MrRTF)、曲度 (curvature)、匯流分析 (flow accumulation) 及 逕流強度指數 (stream power index; SPI),前 列地形參數參考 Ma *et al.* (2017) 對於有機碳 預測模型建立與繪圖之研究。

常態化差異植生指標 (normalized difference vegetation index; NDVI) 為利用衛星影像 (Sentinel 2) 2015-2020 年間紅外光 (b4) 與近紅外光 (b8) 影像資料所計算,用以判斷空間中綠色植物的覆蓋比例,根據 Mulder *et al.* (2011), NDVI 能夠作為 DSM 中預測有機碳的有用共變數。

氣候為成土因子之一,Wiesmeier et al. (2019)指出氣候為影響土壤有機碳儲存的指標 之一,本研究使用 2011-2020年的年平均溫度 (mean annual temperature; MAT)與年累積降

圖 1. (A) 濁水溪流域高程;(B) 2011-2020 年均溫;(C) 2011-2020 年累積雨量;(D) 土地覆蓋分布圖;(E) 表土樣本分布圖;(F) 底土樣本分布圖。

Fig. 1. (A) The distribution map of digital elevation model (DEM); (B) mean annual temperature during 2011–2020; (C) total annual precipitation during 2011–2020; (D) land cover; (E) sampling sites of topsoil; and (F) sampling sites of subsoil in Zhuoshui River basin.

表1. 本研究環境共變數列表。

Table 1. List of the environmental covariates in this study.

Type of data	Environmental covariates	Soil forming factor ^z	Type ^y
Remote sensing	Normalized difference vegetation index (NDVI)	o; t	Q
Digital elevation model	Elevation	r	Q
	Slope	r	Q
	Aspect	r	Q
	Terrain ruggedness index (TRI)	r	Q
	Topographic wetness index (TWI)	r	Q
	Terrain position index (TPI)	r	Q
	Multiresolution index of valley bottom flatness (MrVBF)	r	Q
	Multiresolution ridge top flatness (MrRTF)	r	Q
	Stream power index (SPI)	r	Q
	Curvature	r	Q
	Flow accumulation	r	Q
Climate	Mean annual temperature (MAT)	c; t	Q
	Total annual precipitation (TAP)	c; t	Q
Land cover	Land cover	o; t	С
Soil	Soil order	S	С

^z o: organism; t: time; r: relief; c: climate; s: soil.

^y Q: quantitative; C: categorical.

水量 (total annual precipitation; TAP) 作為代表氣候的環境共變數。

本研究使用的土壤分類圖資為美國農業部 所建立之土壤分類系統,六個分類綱目 (category)中的最高級綱目『土綱』,該圖資為農 試所產製。土綱能夠提供綜合性的土壤化育特 徵、環境及時間等資訊,應有利於有機碳儲 量之預測。在本研究區中,以弱育土 (inceptisols)、新成土 (entisols)、淋溶土 (alfisols)及 極育土 (ultisols)為主,三者面積加總占研究 區 90% 以上,另有少部分區域屬淋澱土 (spodosols)。

除以上因子外,土地覆蓋的種類也被認為 會影響土壤有機碳儲存量 (Edmondson et al. 2014)。因此,使用 2015 年的土地覆蓋調查資 料作為本研究環境共變數之一。為呈現不同土 地覆蓋之土壤有機碳儲量差異,本文將研究區 中的土地覆蓋分為水田、旱作(包含雜糧、茶 樹、檳榔以及竹林)、果園、森林(人造林、原 始森林以及高山箭竹林)及其他(雜地與河川 地)等5種類別,空間分布如圖1D。水田、旱 作、果園、森林及其他5個類別於研究區之面 積占比分別為2.8%、3.1%、0.94%、77%及 16%。

預測模型

隨著相關研究發展,數位土壤繪圖技術 已由簡單的線性模型發展至機器學習技術 (Minasny & McBratney 2016),在本研究應用 二項 (Cubist model 與 RF model)廣泛被使用 的數據挖掘模型之外,模型皆會再加入克利 金法,成為結合地理與非地理統計效應的模型 RK with Cubist model 與 RK with RF model, 並比較四者在有機碳儲量的空間分布預測能力 差異。

Cubist model 為規則分類的演算法,由 Quinlan (1992)所提出,基於 M5 樹狀模型所 建立,根據"if-then"的模式,將數據區分數個 子集合,並在各個子集合下找出目標變量與環 境共變數的線性關係;本研究中使用 R 4.0.5 中 的 Cubist 套件進行模型建立,其中 Cubist 模型 需要的參數為 (1) rules,根據規則數對數據進 行分類;(2) extrapolations,決定模型對於數據 的外推程度;以及(3) committees,可以根據數 量生成多個 committees 模型,可以用於修正前 一個預測資料,並在最後輸出所有 committees 模型的結果;本研究不設定 rules 與 extrapolations,由 Cubist 預設,而 committees 利用 caret 套件計算,設定為 20。

RF model 為 Breiman (2001) 提出之學習 集成方法,在模型訓練時利用隨機重複抽樣的 方式將數據集重構為多個相同樣本大小的新數 據集,並在每個數據集中隨機抽取環境共變數 用以建立分類樹或迴歸樹,在連續變量中,模 型預測值為所有迴歸樹所輸出之平均值,在 R 4.0.5 中使用 randomForest 套件進行模型建立, 參數包括:(1) mtry,決定每個新數據集在建 立迴歸樹時所需要抽取的環境共變數數量;(2) ntree,在隨機森林中迴歸樹的數量,本研究中 參數利用 caret 套件計算,設定為 mtry = 7, ntree = 500。

模型訓練與驗證

在模型建立前,本研究利用 R 4.0.5 中 rpart 套件由數據集中抽取 70% 為訓練數據集 (calibration set) 利用其建立演算法;剩餘 30% 則設定為驗證數據集 (validation set),用以驗 證模型的預測效能;在模型表現上以驗證組的 預測值與觀測值進行比較,使用誤差均方根 (root mean square error; RMSE) 與決定係數 (coefficient of determination, *R*²) 作為模型評 估指標。

不確定度分析

利用拔靴法(自助抽樣法,bootstrap)在 訓練數據集裡,以取後放回的方式建立50個 新數據集,並以新數據集建立模型與預測圖 資,而後由以上預測圖資建立90%信賴區間 圖資,以表示該預測模型的不確定度。

地理資訊與數據分析

本研究利用地理資訊軟體 ArcMap 10.7 進 行圖資繪製與地理統計分析,而在數據處理上 則利用 Excel 2016 與 R 4.0.5 進行數據的統計 分析。

結果與討論

土壤有機碳儲量數據統計描述

採樣點位表土與底土的有機碳儲量分布顯 示於圖 2,表土有機碳儲量分布範圍為 0.27-45.53 kg m⁻²,平均 6.95 kg m⁻²,變異係數為 73.86%;底土則為 0.44-16.19 kg m⁻²,平均 3.76 kg m⁻²,變異係數為 62.47%,兩個數據集偏度 皆為 0.20,數據結構變異大並屬於正偏,為使 數據符合模型建立上的統計前提,兩個數據集 皆進行自然對數轉換,使其更接近常態分布, 應用於模型建立。

預測模型選擇

本研究利用 Cubist model、RF model 以及 2個模型的 RK 模型,以訓練數據集與環境共 變數建立演算法,並利用不同指標檢驗模型在 驗證數據集的預測表現,表土與底土的結果分 別呈現於圖3與圖4,兩層十壤皆以RK with Cubist 模型有最好的有機碳儲存量預測能力 (表十 $R^2 = 0.46$ 、RMSE = 0.48;底十 $R^2 = 0.48$ 、 RMSE = 0.50),其他土壤有機碳的預測研究如 Adhikari et al. (2014) 以 RK 預測丹麥 0-5 cm 表土有機碳儲量之表現為 $R^2 = 0.41$ 、RMSE = 0.24; Lacoste et al. (2014) 以 Cubist 模型預測 法國 0-7.5 cm 有機碳儲量的模型表現為 R^2 = 0.12、RMSE = 12.64, 而 Ma et al. (2017) 利 用 RK 預測中國 0-20 cm 土壤有機碳儲量之表 現則為 $R^2 = 0.25$ 、RMSE = 0.12,本研究與其 結果皆有相近或更高之預測表現,而後續會基 於此模型進行預測圖資繪製。

環境共變數重要性

RK with Cubist model 會先建立 Cubist 的 預測模型,再以各個預測點位的殘差繪製殘 差的空間分布圖,而在建立 Cubist 模型時能 夠計算環境共變數的使用比例,以得知環境 共變數在預測土壤有機碳儲存量的重要性,環 境共變數的貢獻比例顯示於圖 5。在環境共變 數中,表土與底土都以土綱與高程作為數據區 分的規則,表土分別使用 29%與 80%、底土 則分別為 18% 與 60%,表示土壤分類與地形 都能有效作為建立分類的條件;而在分群下的

圖 2. 濁水溪流域 (A) 表土 (0-30 cm) 與 (B) 底土 (30-50 cm) 有機碳儲量直方圖。 Fig. 2. Histograms of soil organic carbon (SOC) stock in (A) topsoil (0-30 cm) and (B) subsoil (30-50 cm) in Zhuoshui River basin.

線性模型中,表土主要使用高程 (94%)、TRI (67%)、MAT (60%)、NDVI (47%) 及坡度 (43%),而底土則以高程 (91%)、MAT (75%) 及坡度 (59%)為主。TRI 與坡度代表地形崎嶇 的程度,決定了該地點的太陽輻射強度與水分 保留能力,對有機碳儲存產生影響;而 Rial et al. (2017)指出溫度與 SOC 含量呈現負相關, 較高的海拔與緯度會降低 SOC 的分解速度。 儘管高程所造成的影響歸因於溫度,但由於 溫度圖資原始解析度為1 km,仍需由高解析 度的高程圖資建立更細緻的 SOC 空間分布。 NDVI 為表土主要使用的環境共變數,作為植 被覆蓋的指標之一,而越高的植被覆蓋也會影 響 SOC 的累積。

有機碳儲存量預測圖

圖 6 為濁水溪流域表土與底土有機碳儲量 預測圖,結果顯示,大部分區域表土有機碳 儲量高於底土,預測後的表土有機碳儲量範 圍 0.21-29.52 kg m⁻²,平均值為 9.01 kg m⁻²; 底十有機碳儲量範圍 1.12-12.2 kg m⁻², 平均值 為 4.82 kg m^2 。由於表層十壤累積大部分來自 於地表植生之殘體,土壤有機碳含量通常高於 底土 (Jien et al. 2010; Tsai et al. 2010; Adhikari et al. 2014; Chen et al. 2018; Wadoux et al. 2023) • Adhikari et al. (2014) 指出丹麥表十0-30 cm的有機碳儲量平均約為72 Mg ha⁻¹,深度 0-100 cm 十壤有機碳儲量約為 120 Mg ha⁻¹, 該結果顯示1m的土壤剖面,表層土壤(0-30 cm) 占了 60% 的土壤有機碳; Jien et al. (2010) 與 Tsai et al. (2010) 也指出臺灣耕地與林地 0-30 cm 土壤有機碳儲量約占 0-100 cm 土壤 有機碳儲量的 50% 與 71%。表土與底土有機 碳儲量分布圖呈現濁水溪流域上游較下游高的 趨勢,推測是因為流域上游多為森林且溫度較 低,利於土壤有機碳累積;然而,下游平坦處 為農業區,高溫多雨與頻繁耕犁導致土壤有機 碳容易被分解,故有機碳儲量較低。由環境 共變數重要性結果也指出,高程、年均溫及 NDVI 均為本研究土壤有機碳儲量重要之預測

圖 3. 表土 (0–30 cm) 有機碳儲量驗證數據集在 (A) Cubist、(B) Regression kriging with Cubist、(C) Random forest 及 (D) Regression kriging with Random forest 模型之散布圖,橫軸表示觀測值,縱軸表示預測值,實線表示擬合線。

Fig. 3. Scatter plots of soil organic carbon (SOC) stock for topsoil (0–30 cm) of (A) Cubist, (B) Regression kriging (RK) with Cubist, (C) Random forest and (D) Regression kriging with Random forest models based on validation dataset. The x-axis is observed value and the y-axis is predicted value, the solid line is fitted line.

參數 (圖 5),該結果支持土壤有機碳儲量之空 間分布趨勢。此外,土壤有機碳儲量分布結果 也指出,河道鄰近處有機碳儲量較低,推測在 山谷處高程較低而 TWI 較高,因河流沖刷或 更頻繁的水分移動導致有機碳流失;同時,由 於河道鄰近處土壤以粗質地居多,也導致有機 碳不易長時間累積於土壤中。Guillaume et al. (2022)的研究指出土壤粒徑為評估土壤持久固 碳的關鍵,因細顆粒土壤(黏粒與坋粒)所保 存的有機碳能避免受微生物分解。Tsui et al. (2013)在陽明山的研究結果指出,不同深度範 圍(0-30 cm、0-50 cm及 0-100 cm)之土壤有

圖 4. 底土 (30-50 cm) 有機碳儲量驗證數據集在 (A) Cubist、(B) Regression kriging with Cubist、(C) Random forest 及 (D) Regression kriging with Random forest 模型之散布圖,橫軸表示觀測值,縱軸表示預測值,實線表示擬合線。

Fig. 4. Scatter plots of soil organic carbon (SOC) stock for subsoil (30–50 cm) of (A) Cubist, (B) Regression kriging (RK) with Cubist, (C) Random forest and (D) Regression kriging with Random forest models based on validation dataset. The x-axis is observed value and the y-axis is predicted value, the solid line is fitted line.

機碳儲量與高程具有高度的線性相關,本研究 繪製之有機碳分布亦有相同之趨勢(圖6)。最 後,利用數值計算求得濁水溪流域表土與底土 的總碳儲量分別為28.22與15.14 Tg。由於本 研究未將含石量納入土壤有機碳儲量之計算, 因此,可能導致山坡地與高山地區土壤有機碳 儲量之預測呈現高估的情形,進而高估總碳儲 量之結果,未來將納入合理的土壤含石量觀測 結果,優化土壤有機碳儲量之估算。

圖 5. (A) 表土與 (B) 底土 Cubist 模型中環境共變數預測之重要性。

Fig. 5. Importance of the environmental covariates predictors in Cubist model for (A) topsoil and (B) subsoil. TRI: terrain ruggedness index; MAT: mean annual temperature; NDVI: normalized difference vegetation index; TWI: topographic wetness index; TAP: total annual precipitation; SPI: stream power index; MrVBF: multiresolution index of valley bottom flatness; MrRTF: multiresolution ridge top flatness.

地形與土地覆蓋對土壤有機碳儲存量的 影響

圖 7 為濁水溪流域不同地形與土地覆蓋條 件下有機碳儲量之差異,結果顯示在同一種土 地覆蓋條件下,高山表層土壤(0-30 cm)的有機 碳儲量明顯大於坡地與平地,其中森林與其他 類型的差異分別可高達1.9-3.1倍與1.7-2.4倍, 該結果再次驗證海拔高度、氣溫及雨量為影響 土壤有機碳儲量的主要環境參數(圖 5)。底土 (30-50 cm)的結果顯示,在同一種土地覆蓋條 件下,高山與坡地範圍的底土有機碳儲量無明 顯差異,這兩種地形範圍之底土有機碳儲量皆 顯著大於平原地區,在不同土地覆蓋間皆大於 2倍以上(圖8)。不同土地覆蓋表層土壤有機 碳儲量結果顯示,高山地區以森林土壤(11.2 kg m⁻²)明顯高於其他土地覆蓋類型;在坡地與 平原地區,平均碳儲量最高的類型分別為森林 土壤(5.86 kg m⁻²)與水田土壤(4.38 kg m⁻²)。 Tsai *et al.*(2009)在臺灣北部地區人工林土壤 調查結果指出,在海拔範圍230-1,950 m下, 闊葉樹人工林與針葉樹人工林 0-30 cm 土壤有

圖 6. 濁水溪流域 (A) 表土 (0–30 cm) 與 (B) 底土 (30–50 cm) 有機碳儲量預測圖。 Fig. 6. (A) Topsoil (0–30 cm) and (B) subsoil (30–50 cm) soil organic carbon (SOC) stock predicted maps in Zhuoshui River basin.

機碳儲量平均值分別為6.5 kg m⁻²與7.4 kg m⁻², 該結果與本研究不同的原因可能為氣候條件、 樹種及調查方法 (如採樣密度與含石量估算

等)不同所導致。Tsai *et al.* (2010)的研究指出,全臺森林土壤 (0-30 cm),除了有機質土 (histosols,36.9 kg m⁻²)與淋澱土 (29.5 kg m⁻²)

圖 7. 濁水溪流域 (A) 平原、(B) 坡地及 (C) 高山地區不同土地覆蓋之表土 (0-30 cm) 有機碳儲量盒鬚圖。 Fig. 7. Boxplots of topsoil (0-30 cm) soil organic carbon (SOC) stock under different landcover in (A) plain, (B) slope and (C) mountain areas of Zhuoshui River basin.

圖 8. 濁水溪流域 (A) 平原、(B) 坡地及 (C) 高山地區不同土地覆蓋之底土 (30–50 cm) 有機碳儲量盒鬚圖。 Fig. 8. Boxplots of subsoil (30–50 cm) soil organic carbon (SOC) stock under different landcover in (A) plain, (B) slope and (C) mountain areas of Zhuoshui River basin.

以外,其他十綱之十壤的平均值為10.1 kg m⁻²。 本研究結果顯示,以研究區內分布最廣的弱 育土為例,高山與坡地地區表層土壤(0-30 cm) 有機碳儲量平均值約為 12.3 kg m⁻² (數據 未顯示)。有關水田土壤有機碳儲量,Liu et al. (2021)的研究指出,水稻栽培有助於提高 土壤碳儲量,並說明水田狀態下雖然會有甲烷 排放發生,但碳儲存量往往大於該排放量,因 此建議水稻田管理可抵减人為造成的溫室氣 體排放。此外,該研究也指出全球水稻田土 壤 (0-30 cm) 的碳儲存量約為 51 Mg ha⁻¹ (相 當於 5.1 kg m⁻²),本研究的水田土壤平均值 (4.38 kg m⁻²) 略低於該研究之結果,推測是由 於研究區水稻田位於亞熱帶區域,高溫與頻 繁耕犁 (普遍一年兩期作) 導致土壤中的有機 碳容易分解。儘管如此,相較於旱田與果園土 壤,水田的浸水條件仍有助於有機碳的儲存。 最後,利用數值計算求得濁水溪流域水田、 旱地、果園、森林及其他類型表土 (0-30 cm) 有機碳儲量分別為 0.32 Tg (1.12%)、1.18 Tg (4.19%) • 0.34 Tg (1.19%) • 23.72 Tg (84.04%) 及 2.67 Tg (9.45%); 底土 (30-50 cm) 有機碳儲 量則分別為 0.16 Tg (1.05%)、0.83 Tg (5.47%)、 0.24 Tg (1.61%)、12.09 Tg (79.83%) 及 1.82 Tg (12.03%) •

不確定度分析

數位土壤繪圖除了可用來預測土壤性質, 也可提供預測上界、預測下界及預測限制範圍 (prediction limit range),呈現模型預測的不確 定度與其空間分布 (Xiong et al. 2015)。 圖 9 為利用拔靴法產製之表層土壤 (0-30 cm) 有機 碳儲量預測限制區間、90%預測上限及90% 預測下限分布圖, Malone et al. (2014) 指出在 大多數情況下,90%的觀測值都符合其定義的 預測區間。圖 6A 顯示濁水溪流域表層土壤預 測之有機碳儲量平均為 9.01 kg m⁻², 預測上界 與下界平均分別為 23.55 kg m⁻² 與 3.41 kg m⁻² (圖 9B 與圖 9C),這代表本研究試驗區有機碳 儲量總體預測範圍。由預測限制區間圖顯示, 高山地區相較於坡地與平原地區,具有較大的 預測範圍 (平均 24.81 kg m⁻²), 代表其不確性 度較高 (圖 9A)。不確定度高的原因為高山的

採樣點較少(圖1E),導致模型無法準確預測 高山有機碳儲量分布情形;反之,淺山與平原 地區,因為調查樣點較密集,因此模型預測的 不確定度較低。由不確定度分析結果指出濁水 溪流域表層土壤的預測範圍與誤差,該資訊除 了提供模型的預測能力外,也可作為未來調查 規劃的參考依據,進而提升模型的預測準確度 與降低誤差。

結論

本研究利用數位土壤繪圖預測濁水溪流 域表土 (0-30 cm) 與底土 (30-50 cm) 有機碳 儲量,兩層土壤皆以 RK with Cubist 模型具 有最好的預測能力 (表土 $R^2 = 0.46$ 、底土 $R^2 =$ 0.48),環境共變數中以土綱、高程及年均溫為 重要的預測參數。於有機碳儲量預測圖顯示, 濁水溪流域土壤有機碳儲量上游較下游高,主 要是因為流域上游海拔高且溫度較低,土地覆 蓋以不常變動的森林為主,利於土壤有機碳累 積;流域下游處(淺山坡地與平原)則因高溫 多雨,土地覆蓋又以頻繁耕犁的農業用地(旱 田、水田及果園)為主,易導致土壤有機碳被 分解,故有機碳儲量普遍較低。此外,本研究 結果也指出表土碳儲量大於底土,經由數值計 算得知表土與底土的有機碳儲量分別為28.22 與15.14 Tg。不確定度分析結果指出,高山地 區由於樣點較少,模型預測的不確定度較高。

引用文獻

- Adhikari, K., A. E. Hartemink, B. Minasny, R. Bou Kheir, M. B. Greven, and M. H. Greve. 2014. Digital mapping of soil organic carbon contents and stocks in Denmark. PloS One 9:e105519. doi:10.1371/journal.pone.0105519
- Akpa, S. I. C., I. O. A. Odeh, T. F. A. Bishop, A. E. Hartemink, and I. Y. Amapu. 2016. Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma 271:202–215. doi:10.1016/j.geoderma.2016.02.021
- Blake, G. R. and K. H. Hartge. 1986. Bulk density. p.363–375. *in*: Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd ed. (Klute, A. ed.) American Society of Agronomy, Soil Science Society of America. Madison, WI. 1188 pp.

圖 9. 利用拔靴法產製之表土 (0-30 cm) 有機碳儲量 (A) 預測限制區間、(B) 90% 預測上限及 (C) 90% 預測下 限圖。

Fig. 9. Topsoil (0–30 cm) soil organic carbon (SOC) stock maps of (A) prediction limit range, (B) 90% upper prediction limit and (C) 90% lower prediction limit derived using bootstrapping.

doi:10.2136/sssabookser5.1.2ed.c13

- Breiman, L. 2001. Random forests. Mach. Learn. 45:5– 32. doi:10.1023/A:1010933404324
- Chen, S., M. P. Martin, N. P. A. Saby, C. Walter, D. A. Angers, and D. Arrouays. 2018. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 630:389–400. doi:10.1016/j.scitotenv.2018.02.209
- Dorji, T., I. O. A. Odeh, D. J. Field, and I. C. Baillie.

2014. Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas. For. Ecol. Manag. 318:91–102. doi:10.1016/j.foreco.2014.01.003

Edmondson, J. L., Z. G. Davies, S. A. McCormack, K. J. Gaston, and J. R. Leake. 2014. Land-cover effects on soil organic carbon stocks in a European city. Sci. Total Environ. 472:444–453. doi:10.1016/j.scitotenv.2013.11.025

- Grace, J. 2004. Understanding and managing the global carbon cycle. J. Ecol. 92:189–202. doi:10.1111/ j.0022-0477.2004.00874.x
- Gray, J. M. and T. F. A. Bishop. 2016. Change in soil organic carbon stocks under 12 climate change projections over New South Wales, Australia. Soil Sci. Soc. Amer. J. 80:1296–1307. doi:10.2136/sssaj2016.02.0038
- Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152:195–207. doi:10.1016/j.geoderma.2009.06.003
- Guillaume, T., D. Makowski, Z. Libohova, L. Bragazza, F. Sallaku, and S. Sinaj. 2022. Soil organic carbon saturation in cropland-grassland systems: Storage potential and soil quality. Geoderma 406:115529. doi:10.1016/j.geoderma.2021.115529
- Guo, P. T., M. F. Li, W. Luo, Q. F. Tang, Z. W. Liu, and Z. M. Lin. 2015. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 237:49–59. doi:10.1016/j.geoderma.2014.08.009
- Jenny, H. 1980. The Soil Resource: Origin and Behavior. Ecological Studies. Vol. 37. Springer. New York, NY. 377 pp. doi:10.1007/978-1-4612-6112-4
- Jien, S. H., Z. Y. Hseu, H. Y. Guo, C. C. Tsai, and Z. S. Chen. 2010. Organic carbon storage and management strategies of the rural soils on the basis of soil information system in Taiwan. p.125–137. *in*: Proceedings of International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries. Bogor, Indonesia, September 28–29, 2010. (Chen, Z. S. and F. Agus, eds.) Food and Fertilizer Technology Center (FFTC) for the Asian and Pacific Region. Taipei, Taiwan.
- Johnston, C. A., P. Groffman, D. D. Breshears, Z. G. Cardon, W. Currie, W. Emanuel, ... L. Wielopolski. 2004. Carbon cycling in soil. Front. Ecol. Environ. 2:522– 528. doi:10.1890/1540-9295(2004)002[0522:C-CIS]2.0.CO;2
- Keskin, H. and S. Grunwald. 2018. Regression kriging as a workhorse in the digital soil mapper's toolbox. Geoderma 326:22–41. doi:10.1016/j.geoderma.2018.04.004
- Lacoste, M., B. Minasny, A. McBratney, D. Michot, V. Viaud, and C. Walter. 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma 213:296–311. doi:10.1016/j.geoderma.2013.07.002
- Lamichhane, S., L. Kumar, and B. Wilson. 2019. Digital soil mapping algorithms and covariates for soil

organic carbon mapping and their implications: A review. Geoderma 352:395–413. doi:10.1016/j.geo-derma.2019.05.031

- Liu, Y., T. Ge, K. J. van Groenigen, Y. Yang, P. Wang, K. Cheng, ... Y. Kuzyakov. 2021. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun. Earth Environ. 2:154. doi:10.1038/s43247-021-00229-0
- Ma, Y., B. Minasny, and C. Wu. 2017. Mapping key soil properties to support agricultural production in Eastern China. Geoderma Reg. 10:144–153. doi:10.1016/j.geodrs.2017.06.002
- Malone, B. P., B. Minasny, N. P. Odgers, and A. B. Mc-Bratney. 2014. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 232:34–44. doi:10.1016/ j.geoderma.2014.04.033
- McBratney, A. B., M. L. M. Santos, and B. Minasny. 2003. On digital soil mapping. Geoderma 117:3–52. doi:10.1016/S0016-7061(03)00223-4
- Meersmans, J., F. De Ridder, F. Canters, S. De Baets, and M. Van Molle. 2008. A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 143:1–13. doi:10.1016/ j.geoderma.2007.08.025
- Minasny, B. and A. B. McBratney. 2016. Digital soil mapping: A brief history and some lessons. Geoderma 264:301–311. doi:10.1016/j.geoderma.2015.07.017
- Mulder, V. L., S. de Bruin, M. E. Schaepman, and T. R. Mayr. 2011. The use of remote sensing in soil and terrain mapping- A review. Geoderma 162:1–19. doi:10.1016/j.geoderma.2010.12.018
- Nelson, D. W. and L. E. Sommers. 1983. Total carbon, organic carbon, and organic matter. p.539–579. *in*: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. (Page, A. L, ed.) American Society of Agronomy, Soil Science Society of America. Madison, WI. 1159 pp. doi:10.2134/ agronmonogr9.2.2ed.c29
- Poggio, L., A. Gimona, I. Brown, and M. Castellazzi. 2010. Soil available water capacity interpolation and spatial uncertainty modelling at multiple geographical extents. Geoderma 160:175–188. doi:10.1016/ j.geoderma.2010.09.015
- Quinlan, J. R. 1992. Learning with continuous classes. p.343–348. *in*: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. (Adams, A. and L. Sterling, eds.) World Scientific. Singapore. 410 pp.
- Rial, M., A. Martínez Cortizas, and L. Rodríguez-Lado. 2017. Understanding the spatial distribution of fac-

tors controlling topsoil organic carbon content in European soils. Sci. Total Environ. 609:1411–1422. doi:10.1016/j.scitotenv.2017.08.012

- Rudiyanto, B. Minasny, B. I. Setiawan, S. K. Saptomo, and A. B. McBratney. 2018. Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 313:25–40. doi:10.1016/j.geoderma.2017.10.018
- Scull, P., J. Franklin, O. A. Chadwick, and D. McArthur. 2003. Predictive soil mapping: A review. Prog. Phys. Geog. 27:171–197. doi:10.1191/0309133303pp366ra
- Siewert, M. B. 2018. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 15:1663–1682. doi:10.5194/bg-15-1663-2018
- Singh, B. P., R. Setia, M. Wiesmeier, and A. Kunhikrishnan. 2018. Agricultural management practices and soil organic carbon storage. p.207–244. *in*: Soil Carbon Storage: Modulators, Mechanisms and Modeling. (Singh, B. K., ed.) Academic Press. Cambridge, MA. 340 pp. doi:10.1016/B978-0-12-812766-7.00007-X
- Tsai, C. C., Z. S. Chen, Z. Y. Hseu, C. T. Duh, and H. Y. Guo. 2010. Organic carbon storage and management strategies of the forest soils based on the Forest Soil Survey Database in Taiwan. p.85–102. *in*: Proceedings of International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries. Bogor, Indonesia, September 28–29, 2010. (Chen, Z. S. and F. Agus, eds.) Food and Fertilizer Technology Center (FFTC) for the Asian and Pacific Region. Taipei, Taiwan.
- Tsai, C. C., T. E. Hu, K. C. Lin, and Z. S. Chen. 2009. Estimation of soil organic carbon stocks in plantation forest soils of Northern Taiwan. Taiwan J. For. Sci. 24:103–115. doi:10.7075/TJFS.200906.0103
- Tsui, C. C., X. N. Liu, H. Y. Guo, and Z. S. Chen. 2016. Effect of sampling density on estimation of regional soil organic carbon stock for rural soils in Taiwan. p.35–53. *in*: Geospatial Technology-En-

vironmental and Social Applications. (Imperatore, P. and A. Pepe, eds.) InTech. London, UK. 260 pp. doi:10.5772/64210

- Tsui, C. C., C. C. Tsai, and Z. S. Chen. 2013. Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma 209:119– 127. doi:10.1016/j.geoderma.2013.06.013
- Vaysse, K. and P. Lagacherie. 2015. Evaluating digital soil mapping approaches for mapping GlobalSoil-Map soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Reg. 4:20–30. doi:10.1016/j.geodrs.2014.11.003
- Viaud, V., D. A. Angers, and C. Walter. 2010. Toward landscape-scale modeling of soil organic matter dynamics in agroecosystems. Soil Sci. Soc. Amer. J. 74:1847–1860. doi:10.2136/sssaj2009.0412
- Wadoux, A. M. J. C., M. Román Dobarco, B. Malone, B. Minasny, A. B. McBratney, and R. Searle. 2023. Baseline high-resolution maps of organic carbon content in Australian soils. Sci. Data 10:181. doi:10.1038/s41597-023-02056-8
- Wiesmeier, M., L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, ... I. Kögel-Knabner. 2019. Soil organic carbon storage as a key function of soils- A review of drivers and indicators at various scales. Geoderma 333:149–162. doi:10.1016/ j.geoderma.2018.07.026
- Xiong, X., S. Grunwald, D. B. Myers, J. Kim, W. G. Harris, and N. Bliznyuk. 2015. Assessing uncertainty in soil organic carbon modelling across a highly heterogeneous landscape. Geoderma 251–252:105– 116. doi:10.1016/j.geoderma.2015.03.028
- Yang, R. M., G. L. Zhang, F. Liu, Y. Y. Lu, F. Yang, F. Yang, ... D. C. Li. 2016. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 60:870–878. doi:10.1016/ j.ecolind.2015.08.036
- Zhu, Q. and H. S. Lin. 2010. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere 20:594–606. doi:10.1016/S1002-0160(10)60049-5

Using Digital Soil Mapping to Predict Soil Organic Carbon Stocks in Zhuoshui River Basin

Bo-Jiun Yang¹, Hsin-Ju Yang¹, Tsang-Sen Liu², Yi-Ting Zhang³, and Chien-Hui Syu^{3,*}

Abstract

Yang, B. J., H. J. Yang, T. S. Liu, Y. T. Zhang, and C. H. Syu. 2024. Using digital soil mapping to predict soil organic carbon stocks in Zhuoshui River basin. J. Taiwan Agric. Res. 73(2):135–151.

Soil carbon sink is the second-largest natural carbon sink globally, surpassed only by the ocean. Soil carbon sequestration is recognized as playing a crucial role in climate change adaptation and mitigation. Simultaneously, soil organic carbon (SOC) has positive effects on the physical, chemical, and biological properties of soil. Therefore, the development of accurate mapping techniques is essential for estimating SOC stocks and quantifying soil functions at a regional scale. The objective of this study is to apply digital soil mapping to estimate the SOC stocks in the surface soil (0-30 cm) and subsoil (30-50 cm) of the Zhuoshui River basin. This involves creating spatial distribution prediction maps and conducting uncertainty analysis. Additionally, the study also aims to compare the differences in soil carbon stocks under different topography and land cover. The results show that Regression Kriging (combined with Cubist) has the best predictive performance (surface soil: $R^2 = 0.46$; subsurface soil: $R^2 = 0.48$), with soil order, elevation, and mean annual temperature (MAT) identified as crucial environmental parameters for predicting SOC stocks in both layers. Uncertainty analysis indicates a higher prediction range in forested areas due to fewer soil survey points. In terms of different land cover types (forest, paddy, upland, orchard, other), the study reveals that the surface soil organic carbon stock is highest in mountainous forested areas (11.2 kg m⁻²), while no significant differences are observed in subsoil among land cover types. According to the prediction results, the estimated organic carbon stocks in the surface and subsurface soils of the Zhuoshui River basin are approximately 28.22 and 15.14 million tons (Tg), respectively. The findings of this study can serve as a reference for soil carbon sink estimation, ecosystem services value assessment, and carbon-farming planning in the Zhuoshui River basin.

Key words: Soil organic carbon stocks, Digital soil mapping, Zhuoshui River basin, Machine learning.

Received: December 1, 2023; Accepted: March 12, 2024.

^{*} Corresponding author, e-mail: chsyu@tari.gov.tw

¹ Project Assistants, Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan, ROC.

² Research Fellow and Division Director, Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan, ROC.

³ Associate Research Fellows, Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan, ROC.