栽培技術

微生物製劑應用於高接親培成效之探討

文圖/藍玄錦、昌佳致、徐錦木、陳俊位

近年來,極端氣候頻繁發生,如短期強降雨、暖冬乾旱及寒流等,這些非生物逆境會影響農作物正常生理表現,對於作物栽培及產量有嚴重的影響。我國的高接梨栽培主要於12月下旬至1月中旬進行嫁接,之後萌芽開花期若遇寒流則會造成砧木(橫山梨、鳥梨等)根系及主幹内樹液停止流動,使養分供應量不足,使得梨穗無法順利生長而受害。此外,嫁接後果實生長期間,則可能遭霪雨之影響造成農損,影響農友收益。爰此,本場透過微生物製劑應用,改善高接梨栽培上所遭遇到的非生物逆境,協助產業克服問題。

一、微生物製劑處理

(一)微生物製劑對高接梨耐寒性 提升之應用

110年至113年本場以開發並商品化之木黴菌 TCT768堆肥製劑(菇鮑浚)於當年度果實採收後作為禮肥施用(每株25公斤),並以木黴菌 TCT-P003液態製劑稀釋100倍,進行每週1次定期澆灌,持續3次,可促進光合作用產物累積。後續於氣象預報寒流來襲前3-7日進行 TCT-P003液態製劑施用,若花芽尚未萌發,可採用根灌方式,若已萌發且有新葉長出,可用地上部噴施方式進行。

(二)微生物製劑對高接梨降低霪 雨危害之應用

111 年至 112 年於霪雨發生時期,以 木黴菌 TCT-P003 液態製劑稀釋 100 倍, 每兩週施用 1 次,於上午天氣晴朗時進行 施用,持續至採收。

二、處理效果

(一)微生物製劑對高接梨耐寒性 提升之應用

本場經 110-113 年之試驗調查,110 年處理組受損率為 44.7%,對照組則為 60.3%(表 1),減少 15.6% 之損失。111 年處理組接穗受損率為 25.2%,對照組 為 48.6%,減少 23.4%。112 年試驗期程中,因連續低溫集中在 111 年 12 月中下旬,此時處理組尚未完成嫁接,故皆未受到影響,後續於 1 月下旬雖也有低溫情形,但 10°C以下之時數約僅連續 5小時後即回溫,故對試驗處理組及對照組無影響。113 年處理組受損率約13.5%,對照組則為 31.5%,整體受損率減少 18%。經試驗調查結果顯示,有效降低低溫寒害下之接穗受損率 15.6-23.4%。

表 1 微生物製劑處理對低溫後梨樹接穗之影響

年	組別	調查接穗數	受損接穗數	受損率 (%)
110	處理組	356	159	44.7
	對照組	351	212	60.3
111	處理組	512	129	25.2
	對照組	481	233	48.6
112	處理組	355	18	5.1
	對照組	340	18	5.3
113	處理組	379	51	13.5
	對照組	352	111	31.5

■ 花芽抽出後之遭遇低溫寒流受損接穗(左)與正常發育接穗(右)比較(113.01.31攝)

■ 花芽尚未抽出之低溫寒流後受損接穗(左)與正常發育之接穗(右)比較(110.01.19攝)

■ 霪雨危害下,造成生理落果之果串(左)與正常生長之果串(右)比較(111.03.03攝)

(二)微生物製劑對高接梨降低霪 雨危害之應用

111年及112年2-6月每月降雨日數偏多,而此時為高接梨果實之座果期及果實生長發育期,長期處於陰雨情況下,可能發生日照不足而影響光合作用產能,進一步導致果實發育不良甚至落果,透過TCT-P003之微生物製劑處理,111年(表2)處理組調查51串果串數,受損之果串數為2串,受損率3.9%,對照組調查果串數58串,受損之果串數為8串,受損率則為13.7%。112年處理組受損率為5%,對照組則為20%。經由上述兩年試驗,TCT-P003微生物製劑應用,可減

輕高接梨漕逢霪雨之危害 9.8-15%。

於果實生長至適合採收時進行調查, 110年處理組之果重為470.7公克,顯著 高於對照組411.2公克(表3),果長無 顯著差異,果寬以處理組之10.5公分顯 著高於對照組9.3公分,糖度亦為處理組 11.1°Brix 顯著高於對照組10.3°Brix,酸 度兩者間則無顯著差異。111年處理組之 果長、果寬及果重皆顯著優於對照組,糖 度則無顯著差異,酸度則以對照組顯著高 於處理組。112年及113年處理組果長、 果寬及果重亦顯著高於對照組,糖度無顯 著差異,酸度亦為對照組,糖度無顯 著差異,酸度亦為對照組顯著高於處理 組。微生物製劑處理除可提升單果重14-30%,亦增加糖酸比,使風味更佳。

表 2 微生物製劑處理對霪雨後高接梨果串之影響

年	組別	調查果串數	受損果串數	受損率 (%)
444	處理組	51	2	3.9
111	對照組	58	8	13.7
112	處理組	60	3	5
	對照組	55	11	20

表 3 微生物製劑處理對霪雨後高接梨果實品質之影響

年	組別	果重 (公克)	果長 (公分)	果寬 (公分)	硬度 (N)	糖度 (°Brix)	酸度 (%)
110	處理組	470.7	8.8	10.5	8.2	11.1	0.52
110	對照組	411.2	8.7	9.3	7.9	10.3	0.53
111	處理組	460.8	81.2	9.6	50.0	10.0	0.51
'''	對照組	352.6	73.7	8.9	50.7	9.6	0.59
112	處理組	832.9	9.6	12.3	94.3	10.9	0.13
112	對照組	654.5	8.6	11.0	90.6	11.0	0.17
113	處理組	886.7	9.8	12.4	92.5	11.0	0.12
	對照組	710.5	8.7	11.0	90.1	11.0	0.17

註:110年至111年嫁接品種為"新興",112年至113年之嫁接品種為"寶島甘露"

表 4 微生物製劑處理對高接梨果實品質之影響

組別	醣類 (%)	澱粉 (%)
處理組	3.58	6.20
對照組	3.72	5.53

(三)微生物製劑應用對高接梨耐 逆境能力提升之相關生理 數據

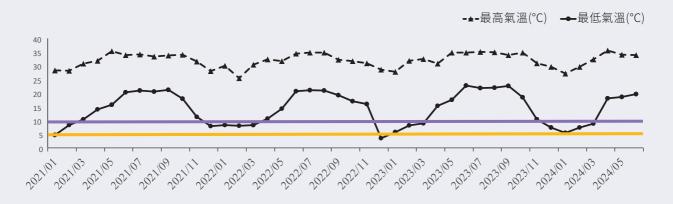
113 年 1 月 22 日 23 時開始直至 1 月 24 日 9 時,長達 34 小時,試驗田區氣溫監測數據皆低於 10 ℃,為釐清高接型處理木黴菌 TCT-P003 後,植體内生理之影響,故進行取樣並分析植株體碳

水化合物累積之差異,處理組澱粉含量 為 6.2%,顯著高於對照組為 5.53%,醣 類則分別為 3.72% 及 3.58%(表 4),兩 者無顯著差異。透過文獻檢索,植株體 類碳水化合物的多寡,會影響作物遭遇 非生物性逆境時之生理表現,累積量越 高,對逆境之耐受性越佳。監控光合作 用之氣孔導度調查顯示,處理組以葉面

表 5 以「作物於逆境表現下之表型體篩選平臺」測試 TCT-P003 對作物低溫處理後生長之影響

	株高相對 累積生長量	莖寬相對 累積生長量	株寬幅相對 累積生長量
		光譜分析 (%)	
低温處理 +TCT-P003	43.1	59.9	138.4
低溫處理	26.1	51.5	98.5
無低溫處理	42.2	61.6	140.1

喷施微生物製劑,隔日其氣孔導度數值 顯著高於對照組,施用7日後亦以處理 組高於對照組,直至第14日時處理組與 對照組之氣孔導度無差異。木黴菌 TCT-P003更進一步委託農科院「作物於 逆境表現下之表型體篩選平臺」進行測 試,該平臺是以木瓜苗作為測試作物, 在低溫處理(10℃,72小時)過後第21 日進行調查,處理木黴菌 TCT-P003之 木瓜苗,其株高、莖寬及株寬幅皆顯著 高於對照組。除此之外,再以無低溫處 理且無施用 TCT-P003之對照組比較, 其兩者生長勢無顯著性差異(表5)。


三、結語

經由4年期之計畫,以微生物製劑

應用於高接梨栽培,結果顯示其對於寒流 低溫及霪雨之危害有減輕的效果,目於十 壤内微生物數量進行分析比較, 處理組之 菌項豐富程度亦優於對照組。透過植株體 内養分分析及生理監測,可了解微生物處 理能有效提高植體内碳水化合物的累積。 TCT-P003 促使植株提升光合作用能力, **並增加植體内碳水化合物之累積,而當植** 株遭遇逆境,則能有效降低逆境之傷害。 除此之外,TCT-P003 亦經由農科院「作 物於逆境表現下之表型體篩選平臺」之確 效性平台測試,其對作物耐逆境能力提升 有幫助,目前本試驗中使用之微生物製劑 TCT768 已授權業者並有商品化之產品可 供應用,TCTP003 則期盡快完成媒合技 轉與商品化,以供產業應用。

處理微生物製劑後對高接梨植株氣孔導度之變化

110年1月-113年5月試驗期間每月最高溫及最低溫變化

110年1月-113年5月試驗期間每月降雨量及降雨日數