栽培技術

文圖/吳以健、李昱錡、郭芝秀

氣候變遷已對全球糧食生產與人類環境造成威脅。根據聯合國糧農組織(FAO)資料,農業部門溫室氣體排放約占全球的四分之一,其中稻作與蔬果栽培亦為重要來源。碳足跡(Carbon footprint)是評估產品生命週期中溫室氣體排放量的指標,通常以「公斤二氧化碳當量(kg CO₂e)」表示。對農產品而言,碳足跡盤查有助於找出高排放熱點,進行管理與改善。臺灣農業地狹人稠、生產密集,若能掌握碳排資訊,除可導入減碳技術,也有助於產品永續行銷與國際接軌。本文以稻米、小黃瓜與紅龍果三種作物為例,介紹盤查流程與成果,推廣農業碳足跡的實務應用。

一、碳足跡盤查的基本流程

碳足跡的評估依據生命週期評估 (LCA) 方法,從原料取得、生產、包裝、運輸到消費與廢棄階段,全面計算排放。依據 ISO 14067 標準,盤查流程包含五大步驟:

1. 目標與範圍界定:

確定要進行碳足跡盤查的產品與功能 單位(例如1包1公斤裝白米),以 及確定即將對該產品生命周期中進 行碳排盤查的各個項目(例如機械使 用、田間排放、運輸車輛)。

2. 資料収集:

依前步驟規劃的盤查項目,逐項調

查,包括肥料、農藥、電力、燃料等 投入量,並納入甲烷與氧化亞氮等田 間排放調查或估算。

3. 碳排計算:

將前步驟之調查結果以各自的排放係 數轉換為CO2當量,作為各項目的碳 排放數據。

4. 彙整與分析:

將前步驟之計算結果進行加總,作為 產品總碳排量之呈現,並評估全生命 周期中的碳排熱點。

5. 第三方驗證與申請碳標籤:

將評估結果先送交第三方查證單位進 行驗證,接著提交環境部申請碳足跡 標籤,作為環保認證或供應鏈審查依 據。

農產品碳足跡的挑戰之一在於資料 變異性大,不同季節、地區或農法都會影 響排放數據,因此盤查時常需針對具代表 性的場域或生產模式做典型調查。本文將 以稻米、小黃瓜、紅龍果 3 個農產品分別 作為糧作、蔬菜、鮮果的農產品案例進行 碳足跡評估,並找出碳排熱點與提出減碳 策略建議。

二、稻米碳足跡盤查實務

以 1 公斤真空包裝白米為例,總碳 足跡約為 2.5 公斤 CO₂e。其中田間栽培 階段貢獻最大 (1.47 公斤),主因為甲烷 與氧化亞氮排放,以及肥料製造。其他階 段如育苗(0.033公斤)、加工(0.18公斤)、 運輸(0.05公斤)與使用(0.8公斤)亦有 貢獻。田間管理是減碳關鍵,建議導入間 歇灌溉、精準施肥、提升機械效率等做 法。部分碾米廠也開始使用稻殼爐進行烘 乾,可降低化石燃料使用。雖然烹煮階段 的碳排無法完全避冤,但若推廣節能家電 與在地消費,也能間接減排。

三、小黃瓜碳足跡盤查實務

我國多數小黃瓜採溫室栽培,以800公克鮮採小黃瓜為對象,總碳足跡為3.30公斤CO2e,其中97.5%來自原料取得階段。最大熱點為溫室電力使用(占81%),其次為肥料製造(16.4%)。整地與採收由人工進行,碳排可忽略。包裝與運輸則貢獻極少(共約0.07公斤)。而小黃瓜栽培過程的溫室,用電量高,導致碳排高於國際露天栽培案例(0.08-2.2公斤CO2e/公斤)。若排除溫室用電,小黃瓜碳足跡可降至0.69公斤,與國外水準相當。未來可推動智慧節能系統與精準施肥,進一步提升效率並減少碳排。

四、紅龍果碳足跡盤查實務

針對 6 公斤裝紅龍果鮮果盤查,其總碳足跡為 3.89 公斤CO₂e。其中原料取得階段占比最高 (53.2%),主要來自電照與價水的用電 (1.59 公斤),其次為農藥與肥料 (0.40 公斤)。製造加工階段則來

稻米、小黃瓜、紅龍果的產品碳足跡比較

他小 、小典//		¥X	(単位・五月002年)
分析項目	白米 (1 公斤)	小黃瓜 (800 公克)	紅龍果 (6 公斤)
	碳排 比例 (%)	碳排 比例 (%)	碳排 比例 (%)
原料取得	1.47 58.6	3.21 97.3	2.07 53.2
加工處理	0.18 7.2	0.05 1.5	1.01 26.0
運輸階段	0.05 2.0	0.02 0.6	0.32 8.3
使用階段	0.80 31.9	0.01 0.3	0.12 3.1
廢棄處理	0.01 0.4	0.01 0.3	0.36 9.4
總碳足跡	2.50 100	3.30 100	3.89 100
碳排熱點	田間甲烷、氮肥	溫室電力、肥料	電照用電、農藥肥料
減碳作為	間歇灌溉、精準施肥	智慧節能、精準施肥	改以 LED 電照、 整合式病蟲害管理

自機械選別與紙箱包裝,排放約 1.01 公斤,占比達 26%。運輸 (0.32 公斤)、使用 (0.12 公斤) 與廢棄處理 (0.36 公斤) 相對較小。改善重點可從照明設備汰換為 LED、導入智慧光照控制與整合式病蟲害管理 (IPM) 等著手。此外,推廣有機資材與草生栽培,也能減少對化學農藥與除草劑的依賴。

五、結語

面對氣候變遷與淨零排放的全球趨勢,農業碳足跡不再只是學術指標,而

是具體可行的減碳工具。透過碳足跡盤查,我們能清楚掌握農產品從育苗、生產到消費的碳排分布,辨識高排放熱點,進而擬定有效的減碳策略。本次針對臺灣 3 項農產品的盤查顯示,稻米的碳排主要來自田間甲烷與氮肥施用,小黃瓜與紅龍果的熱點則在於溫室設施與高耗能作業。這些結果說明,不同作物的碳足跡來源不盡相同,改善策略也應因品項調整,例如導入智慧化節能系統、優化灌溉與施肥管理、以及推廣有機與在地循環資材。碳足跡資料不僅能協助農

(單位: 公斤CO₂e)

民優化生產,也能成為品牌行銷與永續 認證的重要依據。當消費者願意為低碳 農產品買單,農業的減碳動能就能持續 推進。邁向低碳農業,盤查只是起點。 唯有產官學共同努力,建立透明的碳足 跡資料平台,推動技術普及與資源導入, 才能讓永續農業不再只是願景,而是臺 灣農業發展的現實選項。

田間湛水的土壤會排放甲烷,貢獻稻米 主要的碳足跡

小黃瓜約80%的碳足跡來自溫室用電(圖/ 錢昌聖)

■ 紅龍果的田間電照是碳排熱點,可以藉由改變照明種類來減少電力碳排