
氮肥對紫蘇產量與品質影響之初探

丁昭伶(助理研究員)

紫蘇產業簡介

紫蘇為唇形科一年生草本植物,廣泛分 布於世界各地,在亞洲國家具有悠久的栽培 歷史,中國、日本、韓國、印度、越南及泰 國等為主要栽培國家。臺灣紫蘇栽培起源於 民國 67 年自日本引進苗栗縣公館鄉試種, 後續再擴展至其他縣市,86年全臺栽培面 積約 40 公頃,以嘉義縣與苗栗縣為主要產 區,後續十年維持在20~30公頃間,之後 即逐年減少,自100年後栽培面積已少於 10 公頃,近五年更僅餘 0.3~2.46 公頃(圖 一)。112年栽培面積為1.69公頃,主要栽 培地區依序為嘉義縣、高雄市、新北市、雲 林縣及苗栗縣(圖二),紫蘇主要栽培地區 具波動,雖然經濟栽培面積銳減,但紫蘇已 成為鄉野和居家庭園常見的嗜好性作物。紫 蘇依顏色可分為紅葉紫蘇與綠葉紫蘇(青紫 蘇),紅紫蘇較耐熱且香氣濃郁,用於煮食、 醃漬、食物染料等,青紫蘇較喜冷涼環境, 氣味較清新常見於日式料理、沙拉等生食。

圖一、臺灣近 15 年紫蘇種植面積之變化。

臺灣栽培以紅葉紫蘇為主,供作蔬菜料理、 醃漬、釀酒及中草藥等,依應用目的不同其 栽培方式和收穫方法亦有差異,本文以採取 嫩枝梢供作蔬菜食用之栽培方式進行分享。

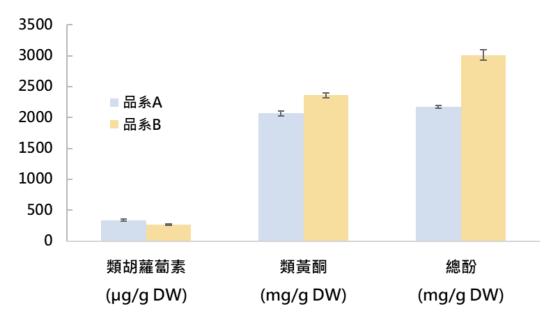
圖二、112 年紫蘇種植面積及縣市分布(全 臺栽培面積 1.69 公頃)。

氮肥用量與紫蘇產量

氮、磷、鉀是肥料三要素,其中氮肥對作物產量表現最為顯著,特別是葉菜類,因此,氮肥也是最容易被過量使用的肥料。氮肥之施用並非愈多愈好,氮肥用量受作物種類、氮肥種類、氮素利用率及環境因子等影響,不同作物有其適宜之氮肥量,過量使用不僅作物產量無法提升,反倒容易導致病蟲害之發生也徒增成本,且土壤中殘留未被有物吸收的氮肥會污染環境,破壞生態,甚至加劇氣候變遷,可見合理化施肥之重量性。本研究以連續採收紫蘇嫩枝梢(圖三)進行試驗規劃,探討氮肥施用量對嫩枝梢產量之影響,因栽培期間不使用化學農藥,為利通

風及降低病害蟲發生率,種植行株距為 90x90 公分,試驗品系為收集自公館地區的紅葉紫 蘇(A及B品系),肥料採用有機質肥料, 氮肥施用量分別為每公頃 200 公斤、230 公 斤及260公斤,分兩次施用,第一次為種植 前的基肥,第二次於6月施用。紫蘇於4月 初定植,6月開始採收,共計算6次採收之 累計產量,結果兩品系皆以每公頃施用氮肥 230 公斤的產量最高, A 品系 230 公斤氮肥量 每公頃之產量為 18 公噸,較 200 及 260 公斤 氮肥量平均增產 60.9%; B 品系為 16 公噸, 較 200 及 260 公斤氮肥量分別增加 47.8%及 5%,但以統計而言 230 及 260 公斤氮肥量對 產量之影響不具顯著差異,可見 B 品系對氮 肥需求量較 A 品系高。兩品系產量皆未隨著 最大氮肥用量而得到最高產值,更進一步顯 示適官氮肥量之重要。

另紫蘇為短日植物,當自然時序進入畫 短夜長時紫蘇即會感應短日而進入開花結果 期,開花後即無法再採收枝葉,因此除了利 用適宜之氮肥量提高產量,也可搭配夜間光 照打破長夜條件,抑制開花進而延長收穫期, 另栽培期間也可施用葉肥,提高枝梢產量及 柔嫩度。


氮肥用量與紫蘇成分

文獻指出紫蘇富含總酚、類黃酮及各類 營養,本試驗同時探討氮肥施用量對紫蘇成 分的影響,結果顯示 A 品系在花青素與類黃 酮含量不受氮肥處理影響,各處理間花青素 與類黃酮含量分別約 0.667 mg/g 及 2,124.9 mg/g;三處理類胡蘿蔔素含量約 263.5~362.6 mg/g,以 200 kg/ha 氮肥量最低,但其總酚含 量則呈現最高值約 2,873.3 mg/g,較另兩處理 高約 25.4~32.4%。B 品系類胡蘿蔔素及類黃酮 含量在各處理間無顯著差異,其含量分別約 257.87~266.06 mg/g 及 2,263.1~2,369.7 mg/g , 花青素含量則以 230 及 260 kg/ha 氮肥施用量 較高,比 200 kg/ha 氮肥量高約 16.3~18.8%, 但總酚含量 260 kg/ha 氮肥量反倒最低,約較 另兩處理減少 10.6~15.5%。由上述結果顯示 氮肥施用量對紫蘇嫩葉成分含量表現具有不 同之影響,且品系間具差異。前述紫蘇230 kg/ha 氮肥施用量可得到最高產量,因此進一 步比較此肥量下兩品系成分表現之差異,結 果顯示B品系花青素、類黃酮及總酚含量顯 著高於 A 品系,但類胡蘿蔔素則顯著少於 A 品系(圖四),顯示氮肥施用量及品系皆會 影響紫蘇成分含量表現。

圖三、紫蘇枝梢採收後抽出之新梢生育良好(左圖為 A 品系;右圖為 B 品系)。

圖四、紫蘇 A 及 B 品系嫩枝梢成分含量比較。

結語

紫蘇曾是臺灣外銷日本的特色經濟作物,雖然近十年來栽培面積低於 10 公頃,但其富含多種營養且具藥用價值,實有繼續發展之潛力。世界各國也因其日漸顯現的經濟價值而投入研究及生產,且已不限於亞洲地區,歐美等國也正視其價值而加入。紫蘇在有些地區是重要的傳統藥草用於傳統療法,也被用於食品、辛香調味料、食物染劑、油品、表一、紫蘇與其他葉菜類營養成分含量比較

藥物、餐盤上的飾品及庭園景觀造景等,其功能及用途廣泛。研究指出紫蘇籽油富含多元不飽和脂肪酸,如α-亞麻油酸等,是一優質的油品;紫蘇葉富含多種營養,表一為紫蘇與常見葉菜類營養成分之比較,其中粗蛋白含量,遠超過一般蔬菜葉片的粗蛋白含量,且膳食纖維、鈣、鋅、鉀、鎂、鐵等營養元素相對較高,另含多種胺基酸,具有開發功能性及嗜好性食品的潛力。

樣品名稱	修正熱量 (kcal)	粗蛋白 (g)	總碳水化 合物 (g)	膳食纖維 (g)	鉀 (mg)	鈣 (mg)	鎂 (mg)	鐵 (mg)	鋅 (mg)	磷 (mg)	維生素 A 總量 (IU)	維生素 E 總 量 (mg)
紫蘇	54	5.5	11.9	8.8	502	401	94	7.4	1.3	69	5,497	2.87
甘藍	21	1.3	4.8	1.1	187	47	12	0.4	0.3	30	52	0.24
甘藷葉	22	3.2	4.4	3.3	401	105	35	2.5	0.5	44	5,960	1.09
芥菜	16	1.5	3.5	1.6	330	80	14	1.2	0.6	32	1,234	0.66
芥藍	16	1.7	3.2	1.9	292	181	31	1.4	0.4	37	7,378	1.34
菠菜	14	2.2	2.4	1.9	510	81	62	2.9	0.7	44	6,163	1.42
蕹菜	16	2.0	3.5	2.9	84	85	33	3.1	0.2	24	1,318	0.56

註:1. 資料來源修正自衛福部食品營養成分資料庫(新版) https://consumer.fda.gov.tw/Food/TFND.aspx? nodeID=178。

2. 數值單位均為每 100 g 可食部分之含量。