農業機械化關鍵!打造適合機械作業的溫室

作物環境科 副研究員 黃惟揚、吳有恒 分機 340、341 助理研究員 周浩源、曾鉅翔 分機 345、346 研究員兼科長 李汪盛 分機 300

前言

國內設施葉菜類作物主要包括小白 菜、青梗白菜、油菜、小松菜、萵苣、菠 菜及茼蒿等葉菜。近期因氣候異常,農民 為改善葉菜之存活率,開始在設施內種 植。國內設施葉菜栽培已開始普遍採用移 植苗,可縮短蔬菜生長期並降低病蟲害。 移植栽培時,每分地需約30,000-50,000株 苗。目前,設施菜苗移植主要依賴人工, 傳統人工種苗平均每小時種2,000株苗,既 辛苦又耗工。為解決種植缺工問題,本場 研發附掛式菜苗移植機(圖1),1人負責駕 駛,2人負責投苗,每小時可種植7,500株 苗,與人工作業相比,機械種植效率提升 2-3成,且作業相當輕鬆。葉菜成熟後需採 收, 工人需蹲在地上進行採收作業, 長期 作業容易造成腰部與膝蓋的傷害,每小時 僅能完成約10平方公尺,作業效率較低。

因此·本場開發電動式葉菜採收機(圖2)· 比傳統人工作業效率高4-5倍。

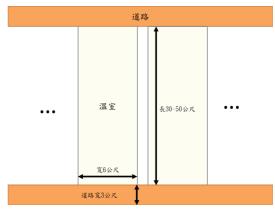
近年農業缺工逐年嚴重,本場推廣設 施菜苗移植機及葉菜採收機,發現大部分 溫室不易導入機械作業,主要是早年建置 溫室尚未考量機械進出的需求。因此,在 規劃與建置溫室時,提供以下建議,以確 保溫室內能順利進行機械化作業。

新建溫室注意事項

1. 溫室基本大小規劃

機械作業的溫室建議長度30-50公尺 (如圖3)。過小的溫室經濟效益不高,過 長的溫室會造成內部通風不良,影響作物 生長。溫室兩端出口處需規劃3公尺寬的道 路,以便搬運車運送資材、農機具進出及 迴轉作業。

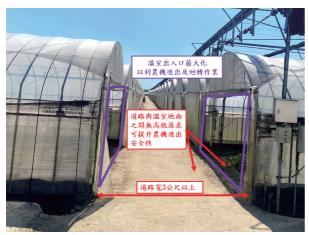
2. 温室出入口建議


為提升溫室進出方便性,建議溫室頭

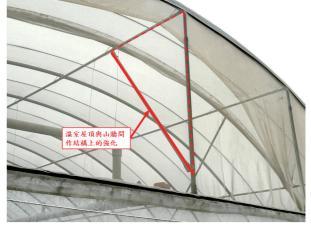
▲圖 1. 附掛式菜苗移植機操作 情形。

▲圖 2. 電動式葉菜 採收機操作情形。

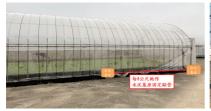
▲圖 3. 溫室及外圍道路空間配置。


尾兩側均設出入口,部分農民移除溫室山 牆面的直立錏管,使出入口最大化(如圖 4),道路和溫室地面之間無高低落差,使 農機具可在溫室外道路迴轉,同時增加溫 室內的栽種面積。為提高溫室的抗風性, 在溫室屋頂與山牆間作結構上的強化(如 圖5)。選定較粗的錏管施作,溫室側面的 錏管每4公尺需用水泥固定地面(圖6)。颱 風天時,沒有種植作物的溫室前後門需開 啟,以降低溫室的損傷。

3. 灌溉系統之規劃


溫室灌溉系統其管路及噴灑系統應離 地2公尺以上(圖7),或建置於溫室左右 兩側(圖8),可避免農機具碰撞灌溉管路。 诱過導入自動排程灌溉或感測系統,可有 效降低溫室的勞動力需求。

結語


機械化作業已成為現代農業發展的核 心方向,特別是在面臨勞動力短缺的挑戰 時,其重要性更加凸顯。若能從初期規劃 階段即融入機械作業的需求考量,不僅能 顯著提高作業效率,還可有效降低人力成 本,進而提升整體經濟效益。為強化機採 菜的銷售管道,機採後的葉菜透過清洗機 與截切機直接銷售至餐飲業者,減輕業者 洗菜及切菜的人力負擔,提升機採菜的市 場競爭力。本文匯集了溫室建置的多項關 鍵建議,涵蓋溫室規模、出入口設計與灌 溉系統等重要面向,期望能為農民朋友提 供實用參考,助力農業生產的高效發展。

▲ 圖 4. 溫室出入口最大化。

▲圖 5. 溫室屋頂與山牆間的強化。

▲圖 6. 建置簡固型溫室。

▲圖 7. 溫室灌溉管路及噴灑系統 ▲圖 8. 噴霧管路建置於溫室左右 離地2公尺以上。

兩側。