農業新知

膠溫室、砂土栽培與滴灌技術為基礎,形成綿延數萬公頃的「塑膠海」(Mar de plástico) 地景。本文簡要介紹阿爾梅里亞設施農業的發展歷程、典型溫室設施與作物布局,並探討當地特有的砂土栽培技術與其對臺灣設施農業發展之啓示。

西班牙阿爾梅里亞 (Almería) 位於地

中海東南沿岸,年均溫約19℃,夏季高

溫可達 28-32℃,冬季介於 8-16℃,全年

日照約3,000 小時,年雨量僅約200毫

米,仍發展出全球密度最高的設施園藝 聚落,被譽為「歐洲的廚房」。當地以塑

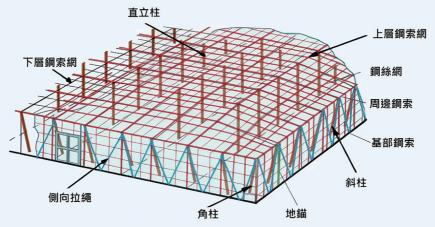
■ 阿爾梅里亞當地綿延數萬公頃的塑膠海 地景

■ 西班牙阿爾梅里亞全年氣溫及降雨量變化

一、從貧瘠荒地到農業重鎮的 轉型歷程

阿爾梅里亞原為資源貧乏的邊緣地區,1950年代起,西班牙政府推動地下水開發與農村定居政策,並鼓勵農民購地自耕。1960年代,當地農民組織合作社,創立農業信貸機構「Cajamar」,提供農業貸款與技術支援,帶動集體設施建設與市場整合。自1970年代起,隨著塑膠溫室與滴灌系統普及,阿爾梅里亞逐步轉型為設施農業重鎮。截至2023年,設施栽培面積已達33,634公頃,占西班牙全國設施蔬果栽培面積的半數以上,衛星空照圖可見整片「塑膠海」景觀,成為地中海型設施農業的代表件樣貌。

二、設施類型與技術演進


阿爾梅里亞常見設施溫室類型如下:

(一)Parral平頂式溫室:

Parral 溫室為阿爾梅里亞地區早期開發的溫室類型,主要由鋼網線架、直立柱、斜撐柱與上/下方鋼索網組成,覆蓋塑膠 PE 膜。側牆與前部高度約為 2.5 公尺;屋脊高度約 4.5 公尺。其結構設計可抗強風,施工成本低,每平方米約 5 歐元,現多為鋼管取代原木支柱,具備抗風能力,雖通風效果有限,但仍為該區主要溫室之一,約佔 1 成。

(二)Almería型溫室:

具緩坡屋頂與高側牆,建置成本便宜,每平方米約5-7歐元,為當地主流設施,約占76%,Almería型溫室採雙層鋼絲網支撐塑膠布,設有天窗強化通風與降溫。側牆與前部高度約為4公尺;屋脊最高處可達5.5公尺。支架系統採用縱橫

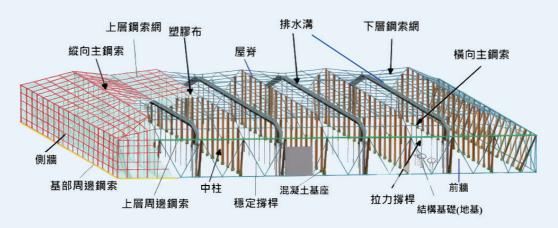
■ Parral平頂式溫室

主索、鋼絲網與混凝土錨定塊加強固定, 利於承重與抗風,適合搭配遮陰布與防蟲 網使用。結構挑高且柱距大,光照均匀, 適合果菜類栽培。地面鋪設混凝土便於作 業車通行,並採吊掛式栽培與滴灌系統管 理。

(三)鋼構圓拱式溫室(Multispan Gothic/arched steel greenhouse):

是阿爾梅里亞地區近年持續推廣的現代化高規格溫室類型之一,造價每平方米約25-40歐元,屋脊最高度可達4-8公尺,適合搭配自動化設施、精準灌溉及環境控制系統。

(四)Venlo型高科技溫室:


少量設置,建置成本高,每平方米為

25 歐元以上,屋脊最高度可達 3-9.7 公 尺、維護困難,多為研究與展示用途。

(資料來源 Valera et al., 2017)

■ Almería型溫室

■ Almería型溫室

三、砂土栽培技術與水資源管理

砂土栽培法 (Enarenado) 為阿爾梅 里亞因應當地資瘠土壤與乾旱環境所發展 出的獨特耕作法,其剖面表層 10-15 公分 為海灘砂或洗砂,利於排水與通氣性,可 防止水分蒸散;中層 5-10 公分為堆肥或 有機質,提供基礎肥力,促進植物根系生 長;底層25-50公分為黏土,具保水功能, 防止水分與養分流失。表層佈設橡膠滴灌 管線 (Rubber drip irrigation),進行精準 供水與施肥。此種人為鋪設之土層系統, 為當地典型且具代表件的設施栽培技術, 有助於節水、減少表面鹽分累積與改善通 氣性, 目利於有機質管理及清園消毒, 藉此建立長期且穩定的耕作制度。此外, 當地亦導入椰纖、珍珠石與泥炭十等介質 進行離地栽培, 並發展雨水回收與都市再 生水處理系統,以提高農業水資源的利用 率。

四、設施作物栽培現況

阿爾梅里亞設施栽培主要作物包含番茄、甜椒、小黃瓜、櫛瓜、西瓜及香瓜等果菜類,這類作物多數為出口導向,栽培模式分為全年栽種番茄、番茄輪作甜瓜或西瓜、甜瓜與其他果菜連續栽種 2 期作等 3 種模式。

五、阿爾梅里亞設施產業成功 要素

(一)高經濟作物布局與產期調節 優勢

阿爾梅里亞的設施多以番茄、甜椒、

阿爾梅里亞當地設施栽培主要作物概況

作物	面積 (公頃)	產量 (公斤/平方公尺)	出口占比 (%)
番茄	7,850	9.56	64
甜椒	7,388	6.94	69
小黃瓜	4,500	9.05	87
西瓜	5,665	6.18	41
櫛瓜	5,100	6.82	64
茄子	1,890	9.92	59

資料來源/Valera et al., 2017

小黃瓜、西瓜及香瓜等高經濟價值蔬果為 主力,透過結合設施環控與輪作安排,實 現周年穩定供應。尤其於歐洲冬春季蔬果 產量低迷期間,阿爾梅里亞能穩定提供新 鮮產品,達到產期調節的策略價值,成為 歐洲市場不可或缺的供應來源。

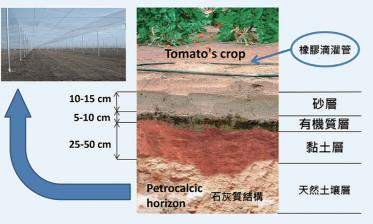
(二)完善合作社體系與拍賣制度

當地 60% 以上農戶參與合作社,合作社除協助供應資材、技術與市場行銷外,也參與產品包裝、品質分級與出口,強化農戶對市場的議價能力。產品多透過合作社主導的農產品拍賣平台交易,實現價格透明與市場穩定,亦能將利潤回饋予生產者。

(三)技術與設施升級推動生產效 率提升

當地廣泛導入滴灌系統、生物防治、 作物施肥監控、二氧化碳補充、塗布隔熱 漆降溫技術與環境感測設備,降低資源浪 費並提升單位產量。此外,新型多跨距溫 室與高頂模組化溫室設計,更適用於整合 自動灌溉、環控,並導入電動液壓升降台 車、直立式噴霧車及拖盤搬運車等機具, 有效減少勞力負擔,提升整體作業效率與 環境適應性。

(四)研發能量強化與知識擴散體 系建置


Tecnova 技術中心、Cajamar農業實驗站及安達盧西亞農業與漁業研究與培訓研究所 (Instituto Andaluz de Investigacióny Formación Agraria, Pesquera, Alimentariay de la Producción Ecológica, IFAPA)等機構在品種開發、設施優化、水肥管理、病蟲害防治等領域提供研發支援,並定期舉辦農民培訓與技術推廣活動,打造研發與生產相結合的創新環境。

(五)專業物流與冷鏈出口系統

阿爾梅里亞的設施蔬果多數銷往法國、德國、英國等國家,透過道路與海運建立快速冷鏈系統。當地合作社與民間企業發展農產品預冷包裝中心、分級作業線與冷藏倉儲設備,確保產品自採收到出貨之間全程低溫保鮮,提升出口競爭力與消費者信賴度。

(六)農業聚落企業群形成垂直整 合優勢

圍繞設施園藝而成的農業群聚包含溫 室設計施工、種苗供應、資材配送、生物

 人為鋪設之床層系統為阿爾梅里亞地區 典型且具代表性的設施栽培基礎(資料來 源/Gil et al., 2018)

防治產品、感測器設備、水資源處理、金融服務與農業物流等 200 餘家業者,形成區域垂直整合與分工專業化模式,大幅降低生產成本並快速因應市場變化。

六、結語

阿爾梅里亞由原本貧瘠且邊陲的農地成功轉型為全球設施農業重鎭,其經驗展現了即使在自然資源有限的情況下,透過技術導入與制度創新,亦可建構具韌性與規模化的農業體系。該地區透過整合氣候資源、模組化設施設計、智慧農業應用與強大產業協作體系,建立具規模、具韌性且可持續的設施農業模式。其特色與台灣現況相比之優缺點,可整理如下:

綜合比較結果,建議臺灣設施農業未 來可從以下四面向強化系統化升級:

(一)推動設施模組標準化與氣候 智慧溫室設計

國内雖已推動設施分級與補助制度, 但尚未依據地區氣候特性進行分區模組化 設計。可借鏡阿爾梅里亞高通風、開頂式 結構,於不同風險區域設計符合區域條件 之設施規格,同時採用低造價建材減輕農 民負擔,提升抗災與節能效率。

(二)強化農機設計與共享機制

阿爾梅里亞溫室中大量使用吊掛搬運 軌道、動力剪枝台車、苗盤運送架等模組 化機械,有效減輕人工負擔。目前國内已 逐步導入果菜類採收與搬運設備試驗,惟 仍缺乏共用平台與維修體系,未來應依作 物特性研發適用工具,並推動農機共用平 台或合作社式資源共享模式。

(三)導入智慧感測與數據整合 平台

阿爾梅里亞已普遍應用土壤濕度、EC 與環境感測器,並結合雲端決策平台進行 自動化滴灌與施肥。國内雖已建立農業氣 象站與病蟲害預警系統,惟與設施應用整 合尚待加強,未來可整合現有氣象資料與 作物模型,研發在地化灌溉決策指標並提 供 APP 端介面,讓農民更易操作與應用。

西班牙阿爾梅里亞與臺灣設施農業比較

項目	西班牙(阿爾梅里亞)	臺灣	可學習之處
氣候 條件	乾燥少雨,病蟲害及天然 災害逆境較少,有利簡化 設施結構與減少用藥	高溫多濕,病蟲害及天 然災害逆境較多,設施 需求高	臺灣設施設計重視降溫、 通風、防颱及病蟲害防治
溫室 設計	結構簡單、低成本、可開 天窗,改善高溫及通風情 形	簡易塑膠布溫室為主,少 部分為鋼骨結構溫室,結 構雖強但造價高	可依地區條件導入中低成 本模組化溫室
機械化	普遍使用自動噴藥機、 剪、整枝台車、搬運架 等,減少人力依賴	農機化尚在試驗與推廣 階段	可依作物特性研發適用工 具,另建立共用平台與維 修支援體制
智慧感測	普遍應用土壤濕度、EC、 環境感測等,並結合決策 平台,導入自動化管理	感測器應用有限,與灌溉 控制整合度低	強化氣象資料與作物模型結合應用,導入自動 化管理
產業與 育成系統	Cajamar 基金會整合試驗、數據、金融、教育與貸款媒合服務(一條龍服務)	試驗改良場所與學界多獨 立運作,整合不足	未來可導入示範型設施農 業育成中心制度

(四)建立示範型設施試驗站與農 業育成系統

借鑑 Cajamar 基金會以溫室試驗、 數據轉譯與金融服務一體化的模式,可有 效促進產業轉型。臺灣現有試驗改良場所 與大學雖具備研發與教學能量,但整合仍 有限。可推動設立具示範性之設施農業育 成中心,串聯技術展示、產業媒合與資源 整合平台,並促進產學研協作。

從阿爾梅里亞的經驗可見,農業轉型 成功的關鍵,在於政策引導下的技術創新導 入、產業合作模式建立與農民參與能力提 升。臺灣若能結合氣候調適需求,因地制宜 推動設施農業系統化升級,將有望有效提升 氣候韌性、生產穩定性與農業國際競爭力。